mmtk/global_state.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
use atomic_refcell::AtomicRefCell;
use std::collections::HashMap;
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::sync::Mutex;
use std::time::Instant;
/// This stores some global states for an MMTK instance.
/// Some MMTK components like plans and allocators may keep an reference to the struct, and can access it.
// This used to be a part of the `BasePlan`. In that case, any component that accesses
// the states needs a reference to the plan. It makes it harder for us to reason about the access pattern
// for the plan, as many components hold references to the plan. Besides, the states
// actually are not related with a plan, they are just global states for MMTK. So we refactored
// those fields to this separate struct. For components that access the state, they just need
// a reference to the struct, and are no longer dependent on the plan.
// We may consider further break down the fields into smaller structs.
pub struct GlobalState {
/// Whether MMTk is now ready for collection. This is set to true when initialize_collection() is called.
pub(crate) initialized: AtomicBool,
/// The current GC status.
pub(crate) gc_status: Mutex<GcStatus>,
/// When did the last GC start? Only accessed by the last parked worker.
pub(crate) gc_start_time: AtomicRefCell<Option<Instant>>,
/// Is the current GC an emergency collection? Emergency means we may run out of memory soon, and we should
/// attempt to collect as much as we can.
pub(crate) emergency_collection: AtomicBool,
/// Is the current GC triggered by the user?
pub(crate) user_triggered_collection: AtomicBool,
/// Is the current GC triggered internally by MMTK? This is unused for now. We may have internally triggered GC
/// for a concurrent plan.
pub(crate) internal_triggered_collection: AtomicBool,
/// Is the last GC internally triggered?
pub(crate) last_internal_triggered_collection: AtomicBool,
// Has an allocation succeeded since the emergency collection?
pub(crate) allocation_success: AtomicBool,
// Maximum number of failed attempts by a single thread
pub(crate) max_collection_attempts: AtomicUsize,
// Current collection attempt
pub(crate) cur_collection_attempts: AtomicUsize,
/// A counter for per-mutator stack scanning
pub(crate) scanned_stacks: AtomicUsize,
/// Have we scanned all the stacks?
pub(crate) stacks_prepared: AtomicBool,
/// A counter that keeps tracks of the number of bytes allocated since last stress test
pub(crate) allocation_bytes: AtomicUsize,
/// A counteer that keeps tracks of the number of bytes allocated by malloc
#[cfg(feature = "malloc_counted_size")]
pub(crate) malloc_bytes: AtomicUsize,
/// This stores the live bytes and the used bytes (by pages) for each space in last GC. This counter is only updated in the GC release phase.
pub(crate) live_bytes_in_last_gc: AtomicRefCell<HashMap<&'static str, LiveBytesStats>>,
}
impl GlobalState {
/// Is MMTk initialized?
pub fn is_initialized(&self) -> bool {
self.initialized.load(Ordering::SeqCst)
}
/// Set the collection kind for the current GC. This is called before
/// scheduling collection to determin what kind of collection it will be.
pub fn set_collection_kind(
&self,
last_collection_was_exhaustive: bool,
heap_can_grow: bool,
) -> bool {
self.cur_collection_attempts.store(
if self.user_triggered_collection.load(Ordering::Relaxed) {
1
} else {
self.determine_collection_attempts()
},
Ordering::Relaxed,
);
let emergency_collection = !self.is_internal_triggered_collection()
&& last_collection_was_exhaustive
&& self.cur_collection_attempts.load(Ordering::Relaxed) > 1
&& !heap_can_grow;
self.emergency_collection
.store(emergency_collection, Ordering::Relaxed);
emergency_collection
}
fn determine_collection_attempts(&self) -> usize {
if !self.allocation_success.load(Ordering::Relaxed) {
self.max_collection_attempts.fetch_add(1, Ordering::Relaxed);
} else {
self.allocation_success.store(false, Ordering::Relaxed);
self.max_collection_attempts.store(1, Ordering::Relaxed);
}
self.max_collection_attempts.load(Ordering::Relaxed)
}
fn is_internal_triggered_collection(&self) -> bool {
let is_internal_triggered = self
.last_internal_triggered_collection
.load(Ordering::SeqCst);
// Remove this assertion when we have concurrent GC.
assert!(
!is_internal_triggered,
"We have no concurrent GC implemented. We should not have internally triggered GC"
);
is_internal_triggered
}
pub fn is_emergency_collection(&self) -> bool {
self.emergency_collection.load(Ordering::Relaxed)
}
/// Return true if this collection was triggered by application code.
pub fn is_user_triggered_collection(&self) -> bool {
self.user_triggered_collection.load(Ordering::Relaxed)
}
/// Reset collection state information.
pub fn reset_collection_trigger(&self) {
self.last_internal_triggered_collection.store(
self.internal_triggered_collection.load(Ordering::SeqCst),
Ordering::Relaxed,
);
self.internal_triggered_collection
.store(false, Ordering::SeqCst);
self.user_triggered_collection
.store(false, Ordering::Relaxed);
}
/// Are the stacks scanned?
pub fn stacks_prepared(&self) -> bool {
self.stacks_prepared.load(Ordering::SeqCst)
}
/// Prepare for stack scanning. This is usually used with `inform_stack_scanned()`.
/// This should be called before doing stack scanning.
pub fn prepare_for_stack_scanning(&self) {
self.scanned_stacks.store(0, Ordering::SeqCst);
self.stacks_prepared.store(false, Ordering::SeqCst);
}
/// Inform that 1 stack has been scanned. The argument `n_mutators` indicates the
/// total stacks we should scan. This method returns true if the number of scanned
/// stacks equals the total mutator count. Otherwise it returns false. This method
/// is thread safe and we guarantee only one thread will return true.
pub fn inform_stack_scanned(&self, n_mutators: usize) -> bool {
let old = self.scanned_stacks.fetch_add(1, Ordering::SeqCst);
debug_assert!(
old < n_mutators,
"The number of scanned stacks ({}) is more than the number of mutators ({})",
old,
n_mutators
);
let scanning_done = old + 1 == n_mutators;
if scanning_done {
self.stacks_prepared.store(true, Ordering::SeqCst);
}
scanning_done
}
/// Increase the allocation bytes and return the current allocation bytes after increasing
pub fn increase_allocation_bytes_by(&self, size: usize) -> usize {
let old_allocation_bytes = self.allocation_bytes.fetch_add(size, Ordering::SeqCst);
trace!(
"Stress GC: old_allocation_bytes = {}, size = {}, allocation_bytes = {}",
old_allocation_bytes,
size,
self.allocation_bytes.load(Ordering::Relaxed),
);
old_allocation_bytes + size
}
#[cfg(feature = "malloc_counted_size")]
pub fn get_malloc_bytes_in_pages(&self) -> usize {
crate::util::conversions::bytes_to_pages_up(self.malloc_bytes.load(Ordering::Relaxed))
}
#[cfg(feature = "malloc_counted_size")]
pub(crate) fn increase_malloc_bytes_by(&self, size: usize) {
self.malloc_bytes.fetch_add(size, Ordering::SeqCst);
}
#[cfg(feature = "malloc_counted_size")]
pub(crate) fn decrease_malloc_bytes_by(&self, size: usize) {
self.malloc_bytes.fetch_sub(size, Ordering::SeqCst);
}
}
impl Default for GlobalState {
fn default() -> Self {
Self {
initialized: AtomicBool::new(false),
gc_status: Mutex::new(GcStatus::NotInGC),
gc_start_time: AtomicRefCell::new(None),
stacks_prepared: AtomicBool::new(false),
emergency_collection: AtomicBool::new(false),
user_triggered_collection: AtomicBool::new(false),
internal_triggered_collection: AtomicBool::new(false),
last_internal_triggered_collection: AtomicBool::new(false),
allocation_success: AtomicBool::new(false),
max_collection_attempts: AtomicUsize::new(0),
cur_collection_attempts: AtomicUsize::new(0),
scanned_stacks: AtomicUsize::new(0),
allocation_bytes: AtomicUsize::new(0),
#[cfg(feature = "malloc_counted_size")]
malloc_bytes: AtomicUsize::new(0),
live_bytes_in_last_gc: AtomicRefCell::new(HashMap::new()),
}
}
}
#[derive(PartialEq)]
pub enum GcStatus {
NotInGC,
GcPrepare,
GcProper,
}
/// Statistics for the live bytes in the last GC. The statistics is per space.
#[derive(Copy, Clone, Debug)]
pub struct LiveBytesStats {
/// Total accumulated bytes of live objects in the space.
pub live_bytes: usize,
/// Total pages used by the space.
pub used_pages: usize,
/// Total bytes used by the space, computed from `used_pages`.
/// The ratio of live_bytes and used_bytes reflects the utilization of the memory in the space.
pub used_bytes: usize,
}