1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
//! Mutator context for each application thread.
use crate::plan::barriers::Barrier;
use crate::plan::global::Plan;
use crate::plan::AllocationSemantics;
use crate::policy::space::Space;
use crate::util::alloc::allocators::{AllocatorSelector, Allocators};
use crate::util::alloc::Allocator;
use crate::util::{Address, ObjectReference};
use crate::util::{VMMutatorThread, VMWorkerThread};
use crate::vm::VMBinding;
use enum_map::EnumMap;
pub(crate) type SpaceMapping<VM> = Vec<(AllocatorSelector, &'static dyn Space<VM>)>;
/// A place-holder implementation for `MutatorConfig::prepare_func` that should not be called.
/// It is the most often used by plans that sets `PlanConstraints::needs_prepare_mutator` to
/// `false`. It is also used by `NoGC` because it must not trigger GC.
pub(crate) fn unreachable_prepare_func<VM: VMBinding>(
_mutator: &mut Mutator<VM>,
_tls: VMWorkerThread,
) {
unreachable!("`MutatorConfig::prepare_func` must not be called for the current plan.")
}
/// A place-holder implementation for `MutatorConfig::release_func` that should not be called.
/// Currently only used by `NoGC`.
pub(crate) fn unreachable_release_func<VM: VMBinding>(
_mutator: &mut Mutator<VM>,
_tls: VMWorkerThread,
) {
unreachable!("`MutatorConfig::release_func` must not be called for the current plan.")
}
/// A place-holder implementation for `MutatorConfig::release_func` that does nothing.
pub(crate) fn no_op_release_func<VM: VMBinding>(_mutator: &mut Mutator<VM>, _tls: VMWorkerThread) {}
// This struct is part of the Mutator struct.
// We are trying to make it fixed-sized so that VM bindings can easily define a Mutator type to have the exact same layout as our Mutator struct.
#[repr(C)]
pub struct MutatorConfig<VM: VMBinding> {
/// Mapping between allocation semantics and allocator selector
pub allocator_mapping: &'static EnumMap<AllocationSemantics, AllocatorSelector>,
/// Mapping between allocator selector and spaces. Each pair represents a mapping.
/// Put this behind a box, so it is a pointer-sized field.
#[allow(clippy::box_collection)]
pub space_mapping: Box<SpaceMapping<VM>>,
/// Plan-specific code for mutator prepare. The VMWorkerThread is the worker thread that executes this prepare function.
pub prepare_func: &'static (dyn Fn(&mut Mutator<VM>, VMWorkerThread) + Send + Sync),
/// Plan-specific code for mutator release. The VMWorkerThread is the worker thread that executes this release function.
pub release_func: &'static (dyn Fn(&mut Mutator<VM>, VMWorkerThread) + Send + Sync),
}
impl<VM: VMBinding> std::fmt::Debug for MutatorConfig<VM> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str("MutatorConfig:\n")?;
f.write_str("Semantics mapping:\n")?;
for (semantic, selector) in self.allocator_mapping.iter() {
let space_name: &str = match self
.space_mapping
.iter()
.find(|(selector_to_find, _)| selector_to_find == selector)
{
Some((_, space)) => space.name(),
None => "!!!missing space here!!!",
};
f.write_fmt(format_args!(
"- {:?} = {:?} ({:?})\n",
semantic, selector, space_name
))?;
}
f.write_str("Space mapping:\n")?;
for (selector, space) in self.space_mapping.iter() {
f.write_fmt(format_args!("- {:?} = {:?}\n", selector, space.name()))?;
}
Ok(())
}
}
/// A mutator is a per-thread data structure that manages allocations and barriers. It is usually highly coupled with the language VM.
/// It is recommended for MMTk users 1) to have a mutator struct of the same layout in the thread local storage that can be accessed efficiently,
/// and 2) to implement fastpath allocation and barriers for the mutator in the VM side.
// We are trying to make this struct fixed-sized so that VM bindings can easily define a type to have the exact same layout as this struct.
// Currently Mutator is fixed sized, and we should try keep this invariant:
// - Allocators are fixed-length arrays of allocators.
// - MutatorConfig only has pointers/refs (including fat pointers), and is fixed sized.
#[repr(C)]
pub struct Mutator<VM: VMBinding> {
pub(crate) allocators: Allocators<VM>,
/// Holds some thread-local states for the barrier.
pub barrier: Box<dyn Barrier<VM>>,
/// The mutator thread that is bound with this Mutator struct.
pub mutator_tls: VMMutatorThread,
pub(crate) plan: &'static dyn Plan<VM = VM>,
pub(crate) config: MutatorConfig<VM>,
}
impl<VM: VMBinding> MutatorContext<VM> for Mutator<VM> {
fn prepare(&mut self, tls: VMWorkerThread) {
(*self.config.prepare_func)(self, tls)
}
fn release(&mut self, tls: VMWorkerThread) {
(*self.config.release_func)(self, tls)
}
// Note that this method is slow, and we expect VM bindings that care about performance to implement allocation fastpath sequence in their bindings.
fn alloc(
&mut self,
size: usize,
align: usize,
offset: usize,
allocator: AllocationSemantics,
) -> Address {
unsafe {
self.allocators
.get_allocator_mut(self.config.allocator_mapping[allocator])
}
.alloc(size, align, offset)
}
fn alloc_slow(
&mut self,
size: usize,
align: usize,
offset: usize,
allocator: AllocationSemantics,
) -> Address {
unsafe {
self.allocators
.get_allocator_mut(self.config.allocator_mapping[allocator])
}
.alloc_slow(size, align, offset)
}
// Note that this method is slow, and we expect VM bindings that care about performance to implement allocation fastpath sequence in their bindings.
fn post_alloc(
&mut self,
refer: ObjectReference,
_bytes: usize,
allocator: AllocationSemantics,
) {
unsafe {
self.allocators
.get_allocator_mut(self.config.allocator_mapping[allocator])
}
.get_space()
.initialize_object_metadata(refer, true)
}
fn get_tls(&self) -> VMMutatorThread {
self.mutator_tls
}
fn barrier(&mut self) -> &mut dyn Barrier<VM> {
&mut *self.barrier
}
}
impl<VM: VMBinding> Mutator<VM> {
/// Get all the valid allocator selector (no duplicate)
fn get_all_allocator_selectors(&self) -> Vec<AllocatorSelector> {
use itertools::Itertools;
self.config
.allocator_mapping
.iter()
.map(|(_, selector)| *selector)
.sorted()
.dedup()
.filter(|selector| *selector != AllocatorSelector::None)
.collect()
}
/// Inform each allocator about destroying. Call allocator-specific on destroy methods.
pub fn on_destroy(&mut self) {
for selector in self.get_all_allocator_selectors() {
unsafe { self.allocators.get_allocator_mut(selector) }.on_mutator_destroy();
}
}
/// Get the allocator for the selector.
///
/// # Safety
/// The selector needs to be valid, and points to an allocator that has been initialized.
/// [`crate::memory_manager::get_allocator_mapping`] can be used to get a selector.
pub unsafe fn allocator(&self, selector: AllocatorSelector) -> &dyn Allocator<VM> {
self.allocators.get_allocator(selector)
}
/// Get the mutable allocator for the selector.
///
/// # Safety
/// The selector needs to be valid, and points to an allocator that has been initialized.
/// [`crate::memory_manager::get_allocator_mapping`] can be used to get a selector.
pub unsafe fn allocator_mut(&mut self, selector: AllocatorSelector) -> &mut dyn Allocator<VM> {
self.allocators.get_allocator_mut(selector)
}
/// Get the allocator of a concrete type for the selector.
///
/// # Safety
/// The selector needs to be valid, and points to an allocator that has been initialized.
/// [`crate::memory_manager::get_allocator_mapping`] can be used to get a selector.
pub unsafe fn allocator_impl<T: Allocator<VM>>(&self, selector: AllocatorSelector) -> &T {
self.allocators.get_typed_allocator(selector)
}
/// Get the mutable allocator of a concrete type for the selector.
///
/// # Safety
/// The selector needs to be valid, and points to an allocator that has been initialized.
/// [`crate::memory_manager::get_allocator_mapping`] can be used to get a selector.
pub unsafe fn allocator_impl_mut<T: Allocator<VM>>(
&mut self,
selector: AllocatorSelector,
) -> &mut T {
self.allocators.get_typed_allocator_mut(selector)
}
/// Return the base offset from a mutator pointer to the allocator specified by the selector.
pub fn get_allocator_base_offset(selector: AllocatorSelector) -> usize {
use crate::util::alloc::*;
use memoffset::offset_of;
use std::mem::size_of;
offset_of!(Mutator<VM>, allocators)
+ match selector {
AllocatorSelector::BumpPointer(index) => {
offset_of!(Allocators<VM>, bump_pointer)
+ size_of::<BumpAllocator<VM>>() * index as usize
}
AllocatorSelector::FreeList(index) => {
offset_of!(Allocators<VM>, free_list)
+ size_of::<FreeListAllocator<VM>>() * index as usize
}
AllocatorSelector::Immix(index) => {
offset_of!(Allocators<VM>, immix)
+ size_of::<ImmixAllocator<VM>>() * index as usize
}
AllocatorSelector::LargeObject(index) => {
offset_of!(Allocators<VM>, large_object)
+ size_of::<LargeObjectAllocator<VM>>() * index as usize
}
AllocatorSelector::Malloc(index) => {
offset_of!(Allocators<VM>, malloc)
+ size_of::<MallocAllocator<VM>>() * index as usize
}
AllocatorSelector::MarkCompact(index) => {
offset_of!(Allocators<VM>, markcompact)
+ size_of::<MarkCompactAllocator<VM>>() * index as usize
}
AllocatorSelector::None => panic!("Expect a valid AllocatorSelector, found None"),
}
}
}
/// Each GC plan should provide their implementation of a MutatorContext. *Note that this trait is no longer needed as we removed
/// per-plan mutator implementation and we will remove this trait as well in the future.*
// TODO: We should be able to remove this trait, as we removed per-plan mutator implementation, and there is no other type that implements this trait.
// The Mutator struct above is the only type that implements this trait. We should be able to merge them.
pub trait MutatorContext<VM: VMBinding>: Send + 'static {
/// Do the prepare work for this mutator.
fn prepare(&mut self, tls: VMWorkerThread);
/// Do the release work for this mutator.
fn release(&mut self, tls: VMWorkerThread);
/// Allocate memory for an object.
///
/// Arguments:
/// * `size`: the number of bytes required for the object.
/// * `align`: required alignment for the object.
/// * `offset`: offset associated with the alignment. The result plus the offset will be aligned to the given alignment.
/// * `allocator`: the allocation semantic used for this object.
fn alloc(
&mut self,
size: usize,
align: usize,
offset: usize,
allocator: AllocationSemantics,
) -> Address;
/// The slow path allocation. This is only useful when the binding
/// implements the fast path allocation, and would like to explicitly
/// call the slow path after the fast path allocation fails.
fn alloc_slow(
&mut self,
size: usize,
align: usize,
offset: usize,
allocator: AllocationSemantics,
) -> Address;
/// Perform post-allocation actions. For many allocators none are
/// required.
///
/// Arguments:
/// * `refer`: the newly allocated object.
/// * `bytes`: the size of the space allocated (in bytes).
/// * `allocator`: the allocation semantic used.
fn post_alloc(&mut self, refer: ObjectReference, bytes: usize, allocator: AllocationSemantics);
/// Flush per-mutator remembered sets and create GC work for the remembered sets.
fn flush_remembered_sets(&mut self) {
self.barrier().flush();
}
/// Flush the mutator context.
fn flush(&mut self) {
self.flush_remembered_sets();
}
/// Get the mutator thread for this mutator context. This is the same value as the argument supplied in
/// [`crate::memory_manager::bind_mutator`] when this mutator is created.
fn get_tls(&self) -> VMMutatorThread;
/// Get active barrier trait object
fn barrier(&mut self) -> &mut dyn Barrier<VM>;
}
/// This is used for plans to indicate the number of allocators reserved for the plan.
/// This is used as a parameter for creating allocator/space mapping.
/// A plan is required to reserve the first few allocators. For example, if n_bump_pointer is 1,
/// it means the first bump pointer allocator will be reserved for the plan (and the plan should
/// initialize its mapping itself), and the spaces in common/base plan will use the following bump
/// pointer allocators.
#[allow(dead_code)]
#[derive(Default)]
pub(crate) struct ReservedAllocators {
pub n_bump_pointer: u8,
pub n_large_object: u8,
pub n_malloc: u8,
pub n_immix: u8,
pub n_mark_compact: u8,
pub n_free_list: u8,
}
impl ReservedAllocators {
pub const DEFAULT: Self = ReservedAllocators {
n_bump_pointer: 0,
n_large_object: 0,
n_malloc: 0,
n_immix: 0,
n_mark_compact: 0,
n_free_list: 0,
};
/// check if the number of each allocator is okay. Panics if any allocator exceeds the max number.
fn validate(&self) {
use crate::util::alloc::allocators::*;
assert!(
self.n_bump_pointer as usize <= MAX_BUMP_ALLOCATORS,
"Allocator mapping declared more bump pointer allocators than the max allowed."
);
assert!(
self.n_large_object as usize <= MAX_LARGE_OBJECT_ALLOCATORS,
"Allocator mapping declared more large object allocators than the max allowed."
);
assert!(
self.n_malloc as usize <= MAX_MALLOC_ALLOCATORS,
"Allocator mapping declared more malloc allocators than the max allowed."
);
assert!(
self.n_immix as usize <= MAX_IMMIX_ALLOCATORS,
"Allocator mapping declared more immix allocators than the max allowed."
);
assert!(
self.n_mark_compact as usize <= MAX_MARK_COMPACT_ALLOCATORS,
"Allocator mapping declared more mark compact allocators than the max allowed."
);
assert!(
self.n_free_list as usize <= MAX_FREE_LIST_ALLOCATORS,
"Allocator mapping declared more free list allocators than the max allowed."
);
}
}
/// Create an allocator mapping for spaces in Common/BasePlan for a plan. A plan should reserve its own allocators.
///
/// # Arguments
/// * `reserved`: the number of reserved allocators for the plan specific policies.
/// * `include_common_plan`: whether the plan uses common plan. If a plan uses CommonPlan, we will initialize allocator mapping for spaces in CommonPlan.
pub(crate) fn create_allocator_mapping(
mut reserved: ReservedAllocators,
include_common_plan: bool,
) -> EnumMap<AllocationSemantics, AllocatorSelector> {
// If we need to add new allocators, or new spaces, we need to make sure the allocator we assign here matches the allocator
// we used in create_space_mapping(). The easiest way is to add the space/allocator mapping in the same order. So for any modification to this
// function, please check the other function.
let mut map = EnumMap::<AllocationSemantics, AllocatorSelector>::default();
// spaces in base plan
#[cfg(feature = "code_space")]
{
map[AllocationSemantics::Code] = AllocatorSelector::BumpPointer(reserved.n_bump_pointer);
reserved.n_bump_pointer += 1;
map[AllocationSemantics::LargeCode] =
AllocatorSelector::BumpPointer(reserved.n_bump_pointer);
reserved.n_bump_pointer += 1;
}
#[cfg(feature = "ro_space")]
{
map[AllocationSemantics::ReadOnly] =
AllocatorSelector::BumpPointer(reserved.n_bump_pointer);
reserved.n_bump_pointer += 1;
}
// spaces in common plan
if include_common_plan {
map[AllocationSemantics::Immortal] =
AllocatorSelector::BumpPointer(reserved.n_bump_pointer);
reserved.n_bump_pointer += 1;
map[AllocationSemantics::Los] = AllocatorSelector::LargeObject(reserved.n_large_object);
reserved.n_large_object += 1;
// TODO: This should be freelist allocator once we use marksweep for nonmoving space.
map[AllocationSemantics::NonMoving] =
AllocatorSelector::BumpPointer(reserved.n_bump_pointer);
reserved.n_bump_pointer += 1;
}
reserved.validate();
map
}
/// Create a space mapping for spaces in Common/BasePlan for a plan. A plan should reserve its own allocators.
///
/// # Arguments
/// * `reserved`: the number of reserved allocators for the plan specific policies.
/// * `include_common_plan`: whether the plan uses common plan. If a plan uses CommonPlan, we will initialize allocator mapping for spaces in CommonPlan.
/// * `plan`: the reference to the plan.
pub(crate) fn create_space_mapping<VM: VMBinding>(
mut reserved: ReservedAllocators,
include_common_plan: bool,
plan: &'static dyn Plan<VM = VM>,
) -> Vec<(AllocatorSelector, &'static dyn Space<VM>)> {
// If we need to add new allocators, or new spaces, we need to make sure the allocator we assign here matches the allocator
// we used in create_space_mapping(). The easiest way is to add the space/allocator mapping in the same order. So for any modification to this
// function, please check the other function.
let mut vec: Vec<(AllocatorSelector, &'static dyn Space<VM>)> = vec![];
// spaces in BasePlan
#[cfg(feature = "code_space")]
{
vec.push((
AllocatorSelector::BumpPointer(reserved.n_bump_pointer),
&plan.base().code_space,
));
reserved.n_bump_pointer += 1;
vec.push((
AllocatorSelector::BumpPointer(reserved.n_bump_pointer),
&plan.base().code_lo_space,
));
reserved.n_bump_pointer += 1;
}
#[cfg(feature = "ro_space")]
{
vec.push((
AllocatorSelector::BumpPointer(reserved.n_bump_pointer),
&plan.base().ro_space,
));
reserved.n_bump_pointer += 1;
}
// spaces in CommonPlan
if include_common_plan {
vec.push((
AllocatorSelector::BumpPointer(reserved.n_bump_pointer),
plan.common().get_immortal(),
));
reserved.n_bump_pointer += 1;
vec.push((
AllocatorSelector::LargeObject(reserved.n_large_object),
plan.common().get_los(),
));
reserved.n_large_object += 1;
// TODO: This should be freelist allocator once we use marksweep for nonmoving space.
vec.push((
AllocatorSelector::BumpPointer(reserved.n_bump_pointer),
plan.common().get_nonmoving(),
));
reserved.n_bump_pointer += 1;
}
reserved.validate();
vec
}