mmtk/policy/immix/
immixspace.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
use super::defrag::StatsForDefrag;
use super::line::*;
use super::{block::*, defrag::Defrag};
use crate::plan::VectorObjectQueue;
use crate::policy::gc_work::{TraceKind, TRACE_KIND_TRANSITIVE_PIN};
use crate::policy::sft::GCWorkerMutRef;
use crate::policy::sft::SFT;
use crate::policy::sft_map::SFTMap;
use crate::policy::space::{CommonSpace, Space};
use crate::util::alloc::allocator::AllocatorContext;
use crate::util::constants::LOG_BYTES_IN_PAGE;
use crate::util::heap::chunk_map::*;
use crate::util::heap::BlockPageResource;
use crate::util::heap::PageResource;
use crate::util::linear_scan::{Region, RegionIterator};
use crate::util::metadata::side_metadata::SideMetadataSpec;
#[cfg(feature = "vo_bit")]
use crate::util::metadata::vo_bit;
use crate::util::metadata::{self, MetadataSpec};
use crate::util::object_enum::ObjectEnumerator;
use crate::util::object_forwarding;
use crate::util::{copy::*, epilogue, object_enum};
use crate::util::{Address, ObjectReference};
use crate::vm::*;
use crate::{
    plan::ObjectQueue,
    scheduler::{GCWork, GCWorkScheduler, GCWorker, WorkBucketStage},
    util::opaque_pointer::{VMThread, VMWorkerThread},
    MMTK,
};
use atomic::Ordering;
use std::sync::{atomic::AtomicU8, atomic::AtomicUsize, Arc};

pub(crate) const TRACE_KIND_FAST: TraceKind = 0;
pub(crate) const TRACE_KIND_DEFRAG: TraceKind = 1;

pub struct ImmixSpace<VM: VMBinding> {
    common: CommonSpace<VM>,
    pr: BlockPageResource<VM, Block>,
    /// Allocation status for all chunks in immix space
    pub chunk_map: ChunkMap,
    /// Current line mark state
    pub line_mark_state: AtomicU8,
    /// Line mark state in previous GC
    line_unavail_state: AtomicU8,
    /// A list of all reusable blocks
    pub reusable_blocks: ReusableBlockPool,
    /// Defrag utilities
    pub(super) defrag: Defrag,
    /// How many lines have been consumed since last GC?
    lines_consumed: AtomicUsize,
    /// Object mark state
    mark_state: u8,
    /// Work packet scheduler
    scheduler: Arc<GCWorkScheduler<VM>>,
    /// Some settings for this space
    space_args: ImmixSpaceArgs,
}

/// Some arguments for Immix Space.
pub struct ImmixSpaceArgs {
    /// Mark an object as unlogged when we trace an object.
    /// Normally we set the log bit when we copy an object with [`crate::util::copy::CopySemantics::PromoteToMature`].
    /// In sticky immix, we 'promote' an object to mature when we trace the object
    /// (no matter we copy an object or not). So we have to use `PromoteToMature`, and instead
    /// just set the log bit in the space when an object is traced.
    pub unlog_object_when_traced: bool,
    /// Reset log bit at the start of a major GC.
    /// Normally we do not need to do this. When immix is used as the mature space,
    /// any object should be set as unlogged, and that bit does not need to be cleared
    /// even if the object is dead. But in sticky Immix, the mature object and
    /// the nursery object are in the same space, we will have to use the
    /// bit to differentiate them. So we reset all the log bits in major GCs,
    /// and unlogged the objects when they are traced (alive).
    pub reset_log_bit_in_major_gc: bool,
    /// Whether this ImmixSpace instance contains both young and old objects.
    /// This affects the updating of valid-object bits.  If some lines or blocks of this ImmixSpace
    /// instance contain young objects, their VO bits need to be updated during this GC.  Currently
    /// only StickyImmix is affected.  GenImmix allocates young objects in a separete CopySpace
    /// nursery and its VO bits can be cleared in bulk.
    // Currently only used when "vo_bit" is enabled.  Using #[cfg(...)] to eliminate dead code warning.
    #[cfg(feature = "vo_bit")]
    pub mixed_age: bool,
}

unsafe impl<VM: VMBinding> Sync for ImmixSpace<VM> {}

impl<VM: VMBinding> SFT for ImmixSpace<VM> {
    fn name(&self) -> &'static str {
        self.get_name()
    }

    fn get_forwarded_object(&self, object: ObjectReference) -> Option<ObjectReference> {
        // If we never move objects, look no further.
        if super::NEVER_MOVE_OBJECTS {
            return None;
        }

        if object_forwarding::is_forwarded::<VM>(object) {
            Some(object_forwarding::read_forwarding_pointer::<VM>(object))
        } else {
            None
        }
    }

    fn is_live(&self, object: ObjectReference) -> bool {
        // If the mark bit is set, it is live.
        if self.is_marked(object) {
            return true;
        }

        // If we never move objects, look no further.
        if super::NEVER_MOVE_OBJECTS {
            return false;
        }

        // If the object is forwarded, it is live, too.
        object_forwarding::is_forwarded::<VM>(object)
    }
    #[cfg(feature = "object_pinning")]
    fn pin_object(&self, object: ObjectReference) -> bool {
        VM::VMObjectModel::LOCAL_PINNING_BIT_SPEC.pin_object::<VM>(object)
    }
    #[cfg(feature = "object_pinning")]
    fn unpin_object(&self, object: ObjectReference) -> bool {
        VM::VMObjectModel::LOCAL_PINNING_BIT_SPEC.unpin_object::<VM>(object)
    }
    #[cfg(feature = "object_pinning")]
    fn is_object_pinned(&self, object: ObjectReference) -> bool {
        VM::VMObjectModel::LOCAL_PINNING_BIT_SPEC.is_object_pinned::<VM>(object)
    }
    fn is_movable(&self) -> bool {
        !super::NEVER_MOVE_OBJECTS
    }

    #[cfg(feature = "sanity")]
    fn is_sane(&self) -> bool {
        true
    }
    fn initialize_object_metadata(&self, _object: ObjectReference, _alloc: bool) {
        #[cfg(feature = "vo_bit")]
        crate::util::metadata::vo_bit::set_vo_bit(_object);
    }
    #[cfg(feature = "is_mmtk_object")]
    fn is_mmtk_object(&self, addr: Address) -> Option<ObjectReference> {
        crate::util::metadata::vo_bit::is_vo_bit_set_for_addr(addr)
    }
    #[cfg(feature = "is_mmtk_object")]
    fn find_object_from_internal_pointer(
        &self,
        ptr: Address,
        max_search_bytes: usize,
    ) -> Option<ObjectReference> {
        // We don't need to search more than the max object size in the immix space.
        let search_bytes = usize::min(super::MAX_IMMIX_OBJECT_SIZE, max_search_bytes);
        crate::util::metadata::vo_bit::find_object_from_internal_pointer::<VM>(ptr, search_bytes)
    }
    fn sft_trace_object(
        &self,
        _queue: &mut VectorObjectQueue,
        _object: ObjectReference,
        _worker: GCWorkerMutRef,
    ) -> ObjectReference {
        panic!("We do not use SFT to trace objects for Immix. sft_trace_object() cannot be used.")
    }
}

impl<VM: VMBinding> Space<VM> for ImmixSpace<VM> {
    fn as_space(&self) -> &dyn Space<VM> {
        self
    }
    fn as_sft(&self) -> &(dyn SFT + Sync + 'static) {
        self
    }
    fn get_page_resource(&self) -> &dyn PageResource<VM> {
        &self.pr
    }
    fn maybe_get_page_resource_mut(&mut self) -> Option<&mut dyn PageResource<VM>> {
        Some(&mut self.pr)
    }
    fn common(&self) -> &CommonSpace<VM> {
        &self.common
    }
    fn initialize_sft(&self, sft_map: &mut dyn SFTMap) {
        self.common().initialize_sft(self.as_sft(), sft_map)
    }
    fn release_multiple_pages(&mut self, _start: Address) {
        panic!("immixspace only releases pages enmasse")
    }
    fn set_copy_for_sft_trace(&mut self, _semantics: Option<CopySemantics>) {
        panic!("We do not use SFT to trace objects for Immix. set_copy_context() cannot be used.")
    }

    fn enumerate_objects(&self, enumerator: &mut dyn ObjectEnumerator) {
        object_enum::enumerate_blocks_from_chunk_map::<Block>(enumerator, &self.chunk_map);
    }
}

impl<VM: VMBinding> crate::policy::gc_work::PolicyTraceObject<VM> for ImmixSpace<VM> {
    fn trace_object<Q: ObjectQueue, const KIND: TraceKind>(
        &self,
        queue: &mut Q,
        object: ObjectReference,
        copy: Option<CopySemantics>,
        worker: &mut GCWorker<VM>,
    ) -> ObjectReference {
        if KIND == TRACE_KIND_TRANSITIVE_PIN {
            self.trace_object_without_moving(queue, object)
        } else if KIND == TRACE_KIND_DEFRAG {
            if Block::containing(object).is_defrag_source() {
                debug_assert!(self.in_defrag());
                debug_assert!(
                    !crate::plan::is_nursery_gc(worker.mmtk.get_plan()),
                    "Calling PolicyTraceObject on Immix in nursery GC"
                );
                self.trace_object_with_opportunistic_copy(
                    queue,
                    object,
                    copy.unwrap(),
                    worker,
                    // This should not be nursery collection. Nursery collection does not use PolicyTraceObject.
                    false,
                )
            } else {
                self.trace_object_without_moving(queue, object)
            }
        } else if KIND == TRACE_KIND_FAST {
            self.trace_object_without_moving(queue, object)
        } else {
            unreachable!()
        }
    }

    fn post_scan_object(&self, object: ObjectReference) {
        if super::MARK_LINE_AT_SCAN_TIME && !super::BLOCK_ONLY {
            debug_assert!(self.in_space(object));
            self.mark_lines(object);
        }
    }

    fn may_move_objects<const KIND: TraceKind>() -> bool {
        if KIND == TRACE_KIND_DEFRAG {
            true
        } else if KIND == TRACE_KIND_FAST || KIND == TRACE_KIND_TRANSITIVE_PIN {
            false
        } else {
            unreachable!()
        }
    }
}

impl<VM: VMBinding> ImmixSpace<VM> {
    #[allow(unused)]
    const UNMARKED_STATE: u8 = 0;
    const MARKED_STATE: u8 = 1;

    /// Get side metadata specs
    fn side_metadata_specs() -> Vec<SideMetadataSpec> {
        metadata::extract_side_metadata(&if super::BLOCK_ONLY {
            vec![
                MetadataSpec::OnSide(Block::DEFRAG_STATE_TABLE),
                MetadataSpec::OnSide(Block::MARK_TABLE),
                MetadataSpec::OnSide(ChunkMap::ALLOC_TABLE),
                *VM::VMObjectModel::LOCAL_MARK_BIT_SPEC,
                *VM::VMObjectModel::LOCAL_FORWARDING_BITS_SPEC,
                *VM::VMObjectModel::LOCAL_FORWARDING_POINTER_SPEC,
                #[cfg(feature = "object_pinning")]
                *VM::VMObjectModel::LOCAL_PINNING_BIT_SPEC,
            ]
        } else {
            vec![
                MetadataSpec::OnSide(Line::MARK_TABLE),
                MetadataSpec::OnSide(Block::DEFRAG_STATE_TABLE),
                MetadataSpec::OnSide(Block::MARK_TABLE),
                MetadataSpec::OnSide(ChunkMap::ALLOC_TABLE),
                *VM::VMObjectModel::LOCAL_MARK_BIT_SPEC,
                *VM::VMObjectModel::LOCAL_FORWARDING_BITS_SPEC,
                *VM::VMObjectModel::LOCAL_FORWARDING_POINTER_SPEC,
                #[cfg(feature = "object_pinning")]
                *VM::VMObjectModel::LOCAL_PINNING_BIT_SPEC,
            ]
        })
    }

    pub fn new(
        args: crate::policy::space::PlanCreateSpaceArgs<VM>,
        space_args: ImmixSpaceArgs,
    ) -> Self {
        #[cfg(feature = "immix_non_moving")]
        info!(
            "Creating non-moving ImmixSpace: {}. Block size: 2^{}",
            args.name,
            Block::LOG_BYTES
        );

        if space_args.unlog_object_when_traced || space_args.reset_log_bit_in_major_gc {
            assert!(
                args.constraints.needs_log_bit,
                "Invalid args when the plan does not use log bit"
            );
        }

        super::validate_features();
        #[cfg(feature = "vo_bit")]
        vo_bit::helper::validate_config::<VM>();
        let vm_map = args.vm_map;
        let scheduler = args.scheduler.clone();
        let common =
            CommonSpace::new(args.into_policy_args(true, false, Self::side_metadata_specs()));
        ImmixSpace {
            pr: if common.vmrequest.is_discontiguous() {
                BlockPageResource::new_discontiguous(
                    Block::LOG_PAGES,
                    vm_map,
                    scheduler.num_workers(),
                )
            } else {
                BlockPageResource::new_contiguous(
                    Block::LOG_PAGES,
                    common.start,
                    common.extent,
                    vm_map,
                    scheduler.num_workers(),
                )
            },
            common,
            chunk_map: ChunkMap::new(),
            line_mark_state: AtomicU8::new(Line::RESET_MARK_STATE),
            line_unavail_state: AtomicU8::new(Line::RESET_MARK_STATE),
            lines_consumed: AtomicUsize::new(0),
            reusable_blocks: ReusableBlockPool::new(scheduler.num_workers()),
            defrag: Defrag::default(),
            // Set to the correct mark state when inititialized. We cannot rely on prepare to set it (prepare may get skipped in nursery GCs).
            mark_state: Self::MARKED_STATE,
            scheduler: scheduler.clone(),
            space_args,
        }
    }

    /// Flush the thread-local queues in BlockPageResource
    pub fn flush_page_resource(&self) {
        self.reusable_blocks.flush_all();
        #[cfg(target_pointer_width = "64")]
        self.pr.flush_all()
    }

    /// Get the number of defrag headroom pages.
    pub fn defrag_headroom_pages(&self) -> usize {
        self.defrag.defrag_headroom_pages(self)
    }

    /// Check if current GC is a defrag GC.
    pub fn in_defrag(&self) -> bool {
        self.defrag.in_defrag()
    }

    /// check if the current GC should do defragmentation.
    pub fn decide_whether_to_defrag(
        &self,
        emergency_collection: bool,
        collect_whole_heap: bool,
        collection_attempts: usize,
        user_triggered_collection: bool,
        full_heap_system_gc: bool,
    ) -> bool {
        self.defrag.decide_whether_to_defrag(
            emergency_collection,
            collect_whole_heap,
            collection_attempts,
            user_triggered_collection,
            self.reusable_blocks.len() == 0,
            full_heap_system_gc,
        );
        self.defrag.in_defrag()
    }

    /// Get work packet scheduler
    fn scheduler(&self) -> &GCWorkScheduler<VM> {
        &self.scheduler
    }

    pub fn prepare(&mut self, major_gc: bool, plan_stats: StatsForDefrag) {
        if major_gc {
            // Update mark_state
            if VM::VMObjectModel::LOCAL_MARK_BIT_SPEC.is_on_side() {
                self.mark_state = Self::MARKED_STATE;
            } else {
                // For header metadata, we use cyclic mark bits.
                unimplemented!("cyclic mark bits is not supported at the moment");
            }

            // Prepare defrag info
            if super::DEFRAG {
                self.defrag.prepare(self, plan_stats);
            }

            // Prepare each block for GC
            let threshold = self.defrag.defrag_spill_threshold.load(Ordering::Acquire);
            // # Safety: ImmixSpace reference is always valid within this collection cycle.
            let space = unsafe { &*(self as *const Self) };
            let work_packets = self.chunk_map.generate_tasks(|chunk| {
                Box::new(PrepareBlockState {
                    space,
                    chunk,
                    defrag_threshold: if space.in_defrag() {
                        Some(threshold)
                    } else {
                        None
                    },
                })
            });
            self.scheduler().work_buckets[WorkBucketStage::Prepare].bulk_add(work_packets);

            if !super::BLOCK_ONLY {
                self.line_mark_state.fetch_add(1, Ordering::AcqRel);
                if self.line_mark_state.load(Ordering::Acquire) > Line::MAX_MARK_STATE {
                    self.line_mark_state
                        .store(Line::RESET_MARK_STATE, Ordering::Release);
                }
            }
        }

        #[cfg(feature = "vo_bit")]
        if vo_bit::helper::need_to_clear_vo_bits_before_tracing::<VM>() {
            let maybe_scope = if major_gc {
                // If it is major GC, we always clear all VO bits because we are doing full-heap
                // tracing.
                Some(VOBitsClearingScope::FullGC)
            } else if self.space_args.mixed_age {
                // StickyImmix nursery GC.
                // Some lines (or blocks) contain only young objects,
                // while other lines (or blocks) contain only old objects.
                if super::BLOCK_ONLY {
                    // Block only.  Young objects are only allocated into fully empty blocks.
                    // Only clear unmarked blocks.
                    Some(VOBitsClearingScope::BlockOnly)
                } else {
                    // Young objects are allocated into empty lines.
                    // Only clear unmarked lines.
                    let line_mark_state = self.line_mark_state.load(Ordering::SeqCst);
                    Some(VOBitsClearingScope::Line {
                        state: line_mark_state,
                    })
                }
            } else {
                // GenImmix nursery GC.  We do nothing to the ImmixSpace because the nursery is a
                // separate CopySpace.  It'll clear its own VO bits.
                None
            };

            if let Some(scope) = maybe_scope {
                let work_packets = self
                    .chunk_map
                    .generate_tasks(|chunk| Box::new(ClearVOBitsAfterPrepare { chunk, scope }));
                self.scheduler.work_buckets[WorkBucketStage::ClearVOBits].bulk_add(work_packets);
            }
        }
    }

    /// Release for the immix space.
    pub fn release(&mut self, major_gc: bool) {
        if major_gc {
            // Update line_unavail_state for hole searching after this GC.
            if !super::BLOCK_ONLY {
                self.line_unavail_state.store(
                    self.line_mark_state.load(Ordering::Acquire),
                    Ordering::Release,
                );
            }
        }
        // Clear reusable blocks list
        if !super::BLOCK_ONLY {
            self.reusable_blocks.reset();
        }
        // Sweep chunks and blocks
        let work_packets = self.generate_sweep_tasks();
        self.scheduler().work_buckets[WorkBucketStage::Release].bulk_add(work_packets);

        self.lines_consumed.store(0, Ordering::Relaxed);
    }

    /// This is called when a GC finished.
    /// Return whether this GC was a defrag GC, as a plan may want to know this.
    pub fn end_of_gc(&mut self) -> bool {
        let did_defrag = self.defrag.in_defrag();
        if super::DEFRAG {
            self.defrag.reset_in_defrag();
        }
        did_defrag
    }

    /// Generate chunk sweep tasks
    fn generate_sweep_tasks(&self) -> Vec<Box<dyn GCWork<VM>>> {
        self.defrag.mark_histograms.lock().clear();
        // # Safety: ImmixSpace reference is always valid within this collection cycle.
        let space = unsafe { &*(self as *const Self) };
        let epilogue = Arc::new(FlushPageResource {
            space,
            counter: AtomicUsize::new(0),
        });
        let tasks = self.chunk_map.generate_tasks(|chunk| {
            Box::new(SweepChunk {
                space,
                chunk,
                epilogue: epilogue.clone(),
            })
        });
        epilogue.counter.store(tasks.len(), Ordering::SeqCst);
        tasks
    }

    /// Release a block.
    pub fn release_block(&self, block: Block) {
        block.deinit();
        self.pr.release_block(block);
    }

    /// Allocate a clean block.
    pub fn get_clean_block(&self, tls: VMThread, copy: bool) -> Option<Block> {
        let block_address = self.acquire(tls, Block::PAGES);
        if block_address.is_zero() {
            return None;
        }
        self.defrag.notify_new_clean_block(copy);
        let block = Block::from_aligned_address(block_address);
        block.init(copy);
        self.chunk_map.set(block.chunk(), ChunkState::Allocated);
        self.lines_consumed
            .fetch_add(Block::LINES, Ordering::SeqCst);
        Some(block)
    }

    /// Pop a reusable block from the reusable block list.
    pub fn get_reusable_block(&self, copy: bool) -> Option<Block> {
        if super::BLOCK_ONLY {
            return None;
        }
        loop {
            if let Some(block) = self.reusable_blocks.pop() {
                // Skip blocks that should be evacuated.
                if copy && block.is_defrag_source() {
                    continue;
                }

                // Get available lines. Do this before block.init which will reset block state.
                let lines_delta = match block.get_state() {
                    BlockState::Reusable { unavailable_lines } => {
                        Block::LINES - unavailable_lines as usize
                    }
                    BlockState::Unmarked => Block::LINES,
                    _ => unreachable!("{:?} {:?}", block, block.get_state()),
                };
                self.lines_consumed.fetch_add(lines_delta, Ordering::SeqCst);

                block.init(copy);
                return Some(block);
            } else {
                return None;
            }
        }
    }

    /// Trace and mark objects without evacuation.
    pub fn trace_object_without_moving(
        &self,
        queue: &mut impl ObjectQueue,
        object: ObjectReference,
    ) -> ObjectReference {
        #[cfg(feature = "vo_bit")]
        vo_bit::helper::on_trace_object::<VM>(object);

        if self.attempt_mark(object, self.mark_state) {
            // Mark block and lines
            if !super::BLOCK_ONLY {
                if !super::MARK_LINE_AT_SCAN_TIME {
                    self.mark_lines(object);
                }
            } else {
                Block::containing(object).set_state(BlockState::Marked);
            }

            #[cfg(feature = "vo_bit")]
            vo_bit::helper::on_object_marked::<VM>(object);

            // Visit node
            queue.enqueue(object);
            self.unlog_object_if_needed(object);
            return object;
        }
        object
    }

    /// Trace object and do evacuation if required.
    #[allow(clippy::assertions_on_constants)]
    pub fn trace_object_with_opportunistic_copy(
        &self,
        queue: &mut impl ObjectQueue,
        object: ObjectReference,
        semantics: CopySemantics,
        worker: &mut GCWorker<VM>,
        nursery_collection: bool,
    ) -> ObjectReference {
        let copy_context = worker.get_copy_context_mut();
        debug_assert!(!super::BLOCK_ONLY);

        #[cfg(feature = "vo_bit")]
        vo_bit::helper::on_trace_object::<VM>(object);

        let forwarding_status = object_forwarding::attempt_to_forward::<VM>(object);
        if object_forwarding::state_is_forwarded_or_being_forwarded(forwarding_status) {
            // We lost the forwarding race as some other thread has set the forwarding word; wait
            // until the object has been forwarded by the winner. Note that the object may not
            // necessarily get forwarded since Immix opportunistically moves objects.
            #[allow(clippy::let_and_return)]
            let new_object =
                object_forwarding::spin_and_get_forwarded_object::<VM>(object, forwarding_status);
            #[cfg(debug_assertions)]
            {
                if new_object == object {
                    debug_assert!(
                        self.is_marked(object) || self.defrag.space_exhausted() || self.is_pinned(object),
                        "Forwarded object is the same as original object {} even though it should have been copied",
                        object,
                    );
                } else {
                    // new_object != object
                    debug_assert!(
                        !Block::containing(new_object).is_defrag_source(),
                        "Block {:?} containing forwarded object {} should not be a defragmentation source",
                        Block::containing(new_object),
                        new_object,
                    );
                }
            }
            new_object
        } else if self.is_marked(object) {
            // We won the forwarding race but the object is already marked so we clear the
            // forwarding status and return the unmoved object
            object_forwarding::clear_forwarding_bits::<VM>(object);
            object
        } else {
            // We won the forwarding race; actually forward and copy the object if it is not pinned
            // and we have sufficient space in our copy allocator
            let new_object = if self.is_pinned(object)
                || (!nursery_collection && self.defrag.space_exhausted())
            {
                self.attempt_mark(object, self.mark_state);
                object_forwarding::clear_forwarding_bits::<VM>(object);
                Block::containing(object).set_state(BlockState::Marked);

                #[cfg(feature = "vo_bit")]
                vo_bit::helper::on_object_marked::<VM>(object);

                if !super::MARK_LINE_AT_SCAN_TIME {
                    self.mark_lines(object);
                }

                object
            } else {
                // We are forwarding objects. When the copy allocator allocates the block, it should
                // mark the block. So we do not need to explicitly mark it here.

                object_forwarding::forward_object::<VM>(
                    object,
                    semantics,
                    copy_context,
                    |_new_object| {
                        #[cfg(feature = "vo_bit")]
                        vo_bit::helper::on_object_forwarded::<VM>(_new_object);
                    },
                )
            };
            debug_assert_eq!(
                Block::containing(new_object).get_state(),
                BlockState::Marked
            );

            queue.enqueue(new_object);
            debug_assert!(new_object.is_live());
            self.unlog_object_if_needed(new_object);
            new_object
        }
    }

    fn unlog_object_if_needed(&self, object: ObjectReference) {
        if self.space_args.unlog_object_when_traced {
            // Make sure the side metadata for the line can fit into one byte. For smaller line size, we should
            // use `mark_as_unlogged` instead to mark the bit.
            const_assert!(
                Line::BYTES
                    >= (1
                        << (crate::util::constants::LOG_BITS_IN_BYTE
                            + crate::util::constants::LOG_MIN_OBJECT_SIZE))
            );
            const_assert_eq!(
                crate::vm::object_model::specs::VMGlobalLogBitSpec::LOG_NUM_BITS,
                0
            ); // We should put this to the addition, but type casting is not allowed in constant assertions.

            // Every immix line is 256 bytes, which is mapped to 4 bytes in the side metadata.
            // If we have one object in the line that is mature, we can assume all the objects in the line are mature objects.
            // So we can just mark the byte.
            VM::VMObjectModel::GLOBAL_LOG_BIT_SPEC
                .mark_byte_as_unlogged::<VM>(object, Ordering::Relaxed);
        }
    }

    /// Mark all the lines that the given object spans.
    #[allow(clippy::assertions_on_constants)]
    pub fn mark_lines(&self, object: ObjectReference) {
        debug_assert!(!super::BLOCK_ONLY);
        Line::mark_lines_for_object::<VM>(object, self.line_mark_state.load(Ordering::Acquire));
    }

    /// Atomically mark an object.
    fn attempt_mark(&self, object: ObjectReference, mark_state: u8) -> bool {
        loop {
            let old_value = VM::VMObjectModel::LOCAL_MARK_BIT_SPEC.load_atomic::<VM, u8>(
                object,
                None,
                Ordering::SeqCst,
            );
            if old_value == mark_state {
                return false;
            }

            if VM::VMObjectModel::LOCAL_MARK_BIT_SPEC
                .compare_exchange_metadata::<VM, u8>(
                    object,
                    old_value,
                    mark_state,
                    None,
                    Ordering::SeqCst,
                    Ordering::SeqCst,
                )
                .is_ok()
            {
                break;
            }
        }
        true
    }

    /// Check if an object is marked.
    fn is_marked_with(&self, object: ObjectReference, mark_state: u8) -> bool {
        let old_value = VM::VMObjectModel::LOCAL_MARK_BIT_SPEC.load_atomic::<VM, u8>(
            object,
            None,
            Ordering::SeqCst,
        );
        old_value == mark_state
    }

    pub(crate) fn is_marked(&self, object: ObjectReference) -> bool {
        self.is_marked_with(object, self.mark_state)
    }

    /// Check if an object is pinned.
    fn is_pinned(&self, _object: ObjectReference) -> bool {
        #[cfg(feature = "object_pinning")]
        return self.is_object_pinned(_object);

        #[cfg(not(feature = "object_pinning"))]
        false
    }

    /// Hole searching.
    ///
    /// Linearly scan lines in a block to search for the next
    /// hole, starting from the given line. If we find available lines,
    /// return a tuple of the start line and the end line (non-inclusive).
    ///
    /// Returns None if the search could not find any more holes.
    #[allow(clippy::assertions_on_constants)]
    pub fn get_next_available_lines(&self, search_start: Line) -> Option<(Line, Line)> {
        debug_assert!(!super::BLOCK_ONLY);
        let unavail_state = self.line_unavail_state.load(Ordering::Acquire);
        let current_state = self.line_mark_state.load(Ordering::Acquire);
        let block = search_start.block();
        let mark_data = block.line_mark_table();
        let start_cursor = search_start.get_index_within_block();
        let mut cursor = start_cursor;
        // Find start
        while cursor < mark_data.len() {
            let mark = mark_data.get(cursor);
            if mark != unavail_state && mark != current_state {
                break;
            }
            cursor += 1;
        }
        if cursor == mark_data.len() {
            return None;
        }
        let start = search_start.next_nth(cursor - start_cursor);
        // Find limit
        while cursor < mark_data.len() {
            let mark = mark_data.get(cursor);
            if mark == unavail_state || mark == current_state {
                break;
            }
            cursor += 1;
        }
        let end = search_start.next_nth(cursor - start_cursor);
        debug_assert!(RegionIterator::<Line>::new(start, end)
            .all(|line| !line.is_marked(unavail_state) && !line.is_marked(current_state)));
        Some((start, end))
    }

    pub fn is_last_gc_exhaustive(did_defrag_for_last_gc: bool) -> bool {
        if super::DEFRAG {
            did_defrag_for_last_gc
        } else {
            // If defrag is disabled, every GC is exhaustive.
            true
        }
    }

    pub(crate) fn get_pages_allocated(&self) -> usize {
        self.lines_consumed.load(Ordering::SeqCst) >> (LOG_BYTES_IN_PAGE - Line::LOG_BYTES as u8)
    }

    /// Post copy routine for Immix copy contexts
    fn post_copy(&self, object: ObjectReference, _bytes: usize) {
        // Mark the object
        VM::VMObjectModel::LOCAL_MARK_BIT_SPEC.store_atomic::<VM, u8>(
            object,
            self.mark_state,
            None,
            Ordering::SeqCst,
        );
        // Mark the line
        if !super::MARK_LINE_AT_SCAN_TIME {
            self.mark_lines(object);
        }
    }
}

/// A work packet to prepare each block for a major GC.
/// Performs the action on a range of chunks.
pub struct PrepareBlockState<VM: VMBinding> {
    pub space: &'static ImmixSpace<VM>,
    pub chunk: Chunk,
    pub defrag_threshold: Option<usize>,
}

impl<VM: VMBinding> PrepareBlockState<VM> {
    /// Clear object mark table
    fn reset_object_mark(&self) {
        // NOTE: We reset the mark bits because cyclic mark bit is currently not supported, yet.
        // See `ImmixSpace::prepare`.
        if let MetadataSpec::OnSide(side) = *VM::VMObjectModel::LOCAL_MARK_BIT_SPEC {
            side.bzero_metadata(self.chunk.start(), Chunk::BYTES);
        }
        if self.space.space_args.reset_log_bit_in_major_gc {
            if let MetadataSpec::OnSide(side) = *VM::VMObjectModel::GLOBAL_LOG_BIT_SPEC {
                // We zero all the log bits in major GC, and for every object we trace, we will mark the log bit again.
                side.bzero_metadata(self.chunk.start(), Chunk::BYTES);
            } else {
                // If the log bit is not in side metadata, we cannot bulk zero. We can either
                // clear the bit for dead objects in major GC, or clear the log bit for new
                // objects. In either cases, we do not need to set log bit at tracing.
                unimplemented!("We cannot bulk zero unlogged bit.")
            }
        }
    }
}

impl<VM: VMBinding> GCWork<VM> for PrepareBlockState<VM> {
    fn do_work(&mut self, _worker: &mut GCWorker<VM>, _mmtk: &'static MMTK<VM>) {
        // Clear object mark table for this chunk
        self.reset_object_mark();
        // Iterate over all blocks in this chunk
        for block in self.chunk.iter_region::<Block>() {
            let state = block.get_state();
            // Skip unallocated blocks.
            if state == BlockState::Unallocated {
                continue;
            }
            // Check if this block needs to be defragmented.
            let is_defrag_source = if !super::DEFRAG {
                // Do not set any block as defrag source if defrag is disabled.
                false
            } else if super::DEFRAG_EVERY_BLOCK {
                // Set every block as defrag source if so desired.
                true
            } else if let Some(defrag_threshold) = self.defrag_threshold {
                // This GC is a defrag GC.
                block.get_holes() > defrag_threshold
            } else {
                // Not a defrag GC.
                false
            };
            block.set_as_defrag_source(is_defrag_source);
            // Clear block mark data.
            block.set_state(BlockState::Unmarked);
            debug_assert!(!block.get_state().is_reusable());
            debug_assert_ne!(block.get_state(), BlockState::Marked);
        }
    }
}

/// Chunk sweeping work packet.
struct SweepChunk<VM: VMBinding> {
    space: &'static ImmixSpace<VM>,
    chunk: Chunk,
    /// A destructor invoked when all `SweepChunk` packets are finished.
    epilogue: Arc<FlushPageResource<VM>>,
}

impl<VM: VMBinding> GCWork<VM> for SweepChunk<VM> {
    fn do_work(&mut self, _worker: &mut GCWorker<VM>, mmtk: &'static MMTK<VM>) {
        assert_eq!(self.space.chunk_map.get(self.chunk), ChunkState::Allocated);

        let mut histogram = self.space.defrag.new_histogram();
        let line_mark_state = if super::BLOCK_ONLY {
            None
        } else {
            Some(self.space.line_mark_state.load(Ordering::Acquire))
        };
        // Hints for clearing side forwarding bits.
        let is_moving_gc = mmtk.get_plan().current_gc_may_move_object();
        let is_defrag_gc = self.space.defrag.in_defrag();
        // number of allocated blocks.
        let mut allocated_blocks = 0;
        // Iterate over all allocated blocks in this chunk.
        for block in self
            .chunk
            .iter_region::<Block>()
            .filter(|block| block.get_state() != BlockState::Unallocated)
        {
            // Clear side forwarding bits.
            // In the beginning of the next GC, no side forwarding bits shall be set.
            // In this way, we can omit clearing forwarding bits when copying object.
            // See `GCWorkerCopyContext::post_copy`.
            // Note, `block.sweep()` overwrites `DEFRAG_STATE_TABLE` with the number of holes,
            // but we need it to know if a block is a defrag source.
            // We clear forwarding bits before `block.sweep()`.
            if let MetadataSpec::OnSide(side) = *VM::VMObjectModel::LOCAL_FORWARDING_BITS_SPEC {
                if is_moving_gc {
                    let objects_may_move = if is_defrag_gc {
                        // If it is a defrag GC, we only clear forwarding bits for defrag sources.
                        block.is_defrag_source()
                    } else {
                        // Otherwise, it must be a nursery GC of StickyImmix with copying nursery.
                        // We don't have information about which block contains moved objects,
                        // so we have to clear forwarding bits for all blocks.
                        true
                    };
                    if objects_may_move {
                        side.bzero_metadata(block.start(), Block::BYTES);
                    }
                }
            }

            if !block.sweep(self.space, &mut histogram, line_mark_state) {
                // Block is live. Increment the allocated block count.
                allocated_blocks += 1;
            }
        }
        probe!(mmtk, sweep_chunk, allocated_blocks);
        // Set this chunk as free if there is not live blocks.
        if allocated_blocks == 0 {
            self.space.chunk_map.set(self.chunk, ChunkState::Free)
        }
        self.space.defrag.add_completed_mark_histogram(histogram);
        self.epilogue.finish_one_work_packet();
    }
}

/// Count number of remaining work pacets, and flush page resource if all packets are finished.
struct FlushPageResource<VM: VMBinding> {
    space: &'static ImmixSpace<VM>,
    counter: AtomicUsize,
}

impl<VM: VMBinding> FlushPageResource<VM> {
    /// Called after a related work packet is finished.
    fn finish_one_work_packet(&self) {
        if 1 == self.counter.fetch_sub(1, Ordering::SeqCst) {
            // We've finished releasing all the dead blocks to the BlockPageResource's thread-local queues.
            // Now flush the BlockPageResource.
            self.space.flush_page_resource()
        }
    }
}

impl<VM: VMBinding> Drop for FlushPageResource<VM> {
    fn drop(&mut self) {
        epilogue::debug_assert_counter_zero(&self.counter, "FlushPageResource::counter");
    }
}

use crate::policy::copy_context::PolicyCopyContext;
use crate::util::alloc::Allocator;
use crate::util::alloc::ImmixAllocator;

/// Normal immix copy context. It has one copying Immix allocator.
/// Most immix plans use this copy context.
pub struct ImmixCopyContext<VM: VMBinding> {
    allocator: ImmixAllocator<VM>,
}

impl<VM: VMBinding> PolicyCopyContext for ImmixCopyContext<VM> {
    type VM = VM;

    fn prepare(&mut self) {
        self.allocator.reset();
    }
    fn release(&mut self) {
        self.allocator.reset();
    }
    fn alloc_copy(
        &mut self,
        _original: ObjectReference,
        bytes: usize,
        align: usize,
        offset: usize,
    ) -> Address {
        self.allocator.alloc(bytes, align, offset)
    }
    fn post_copy(&mut self, obj: ObjectReference, bytes: usize) {
        self.get_space().post_copy(obj, bytes)
    }
}

impl<VM: VMBinding> ImmixCopyContext<VM> {
    pub(crate) fn new(
        tls: VMWorkerThread,
        context: Arc<AllocatorContext<VM>>,
        space: &'static ImmixSpace<VM>,
    ) -> Self {
        ImmixCopyContext {
            allocator: ImmixAllocator::new(tls.0, Some(space), context, true),
        }
    }

    fn get_space(&self) -> &ImmixSpace<VM> {
        self.allocator.immix_space()
    }
}

/// Hybrid Immix copy context. It includes two different immix allocators. One with `copy = true`
/// is used for defrag GCs, and the other is used for other purposes (such as promoting objects from
/// nursery to Immix mature space). This is used by generational immix.
pub struct ImmixHybridCopyContext<VM: VMBinding> {
    copy_allocator: ImmixAllocator<VM>,
    defrag_allocator: ImmixAllocator<VM>,
}

impl<VM: VMBinding> PolicyCopyContext for ImmixHybridCopyContext<VM> {
    type VM = VM;

    fn prepare(&mut self) {
        self.copy_allocator.reset();
        self.defrag_allocator.reset();
    }
    fn release(&mut self) {
        self.copy_allocator.reset();
        self.defrag_allocator.reset();
    }
    fn alloc_copy(
        &mut self,
        _original: ObjectReference,
        bytes: usize,
        align: usize,
        offset: usize,
    ) -> Address {
        if self.get_space().in_defrag() {
            self.defrag_allocator.alloc(bytes, align, offset)
        } else {
            self.copy_allocator.alloc(bytes, align, offset)
        }
    }
    fn post_copy(&mut self, obj: ObjectReference, bytes: usize) {
        self.get_space().post_copy(obj, bytes)
    }
}

impl<VM: VMBinding> ImmixHybridCopyContext<VM> {
    pub(crate) fn new(
        tls: VMWorkerThread,
        context: Arc<AllocatorContext<VM>>,
        space: &'static ImmixSpace<VM>,
    ) -> Self {
        ImmixHybridCopyContext {
            copy_allocator: ImmixAllocator::new(tls.0, Some(space), context.clone(), false),
            defrag_allocator: ImmixAllocator::new(tls.0, Some(space), context, true),
        }
    }

    fn get_space(&self) -> &ImmixSpace<VM> {
        // Both copy allocators should point to the same space.
        debug_assert_eq!(
            self.defrag_allocator.immix_space().common().descriptor,
            self.copy_allocator.immix_space().common().descriptor
        );
        // Just get the space from either allocator
        self.defrag_allocator.immix_space()
    }
}

#[cfg(feature = "vo_bit")]
#[derive(Clone, Copy)]
enum VOBitsClearingScope {
    /// Clear all VO bits in all blocks.
    FullGC,
    /// Clear unmarked blocks, only.
    BlockOnly,
    /// Clear unmarked lines, only.  (i.e. lines with line mark state **not** equal to `state`).
    Line { state: u8 },
}

/// A work packet to clear VO bit metadata after Prepare.
#[cfg(feature = "vo_bit")]
struct ClearVOBitsAfterPrepare {
    chunk: Chunk,
    scope: VOBitsClearingScope,
}

#[cfg(feature = "vo_bit")]
impl<VM: VMBinding> GCWork<VM> for ClearVOBitsAfterPrepare {
    fn do_work(&mut self, _worker: &mut GCWorker<VM>, _mmtk: &'static MMTK<VM>) {
        match self.scope {
            VOBitsClearingScope::FullGC => {
                vo_bit::bzero_vo_bit(self.chunk.start(), Chunk::BYTES);
            }
            VOBitsClearingScope::BlockOnly => {
                self.clear_blocks(None);
            }
            VOBitsClearingScope::Line { state } => {
                self.clear_blocks(Some(state));
            }
        }
    }
}

#[cfg(feature = "vo_bit")]
impl ClearVOBitsAfterPrepare {
    fn clear_blocks(&mut self, line_mark_state: Option<u8>) {
        for block in self
            .chunk
            .iter_region::<Block>()
            .filter(|block| block.get_state() != BlockState::Unallocated)
        {
            block.clear_vo_bits_for_unmarked_regions(line_mark_state);
        }
    }
}