mmtk/policy/marksweepspace/native_ms/
global.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
use std::sync::{
    atomic::{AtomicUsize, Ordering},
    Arc,
};

use crate::{
    policy::{marksweepspace::native_ms::*, sft::GCWorkerMutRef},
    scheduler::{GCWorkScheduler, GCWorker, WorkBucketStage},
    util::{
        copy::CopySemantics,
        epilogue,
        heap::{BlockPageResource, PageResource},
        metadata::{self, side_metadata::SideMetadataSpec, MetadataSpec},
        object_enum::{self, ObjectEnumerator},
        ObjectReference,
    },
    vm::{ActivePlan, VMBinding},
};

#[cfg(feature = "is_mmtk_object")]
use crate::util::Address;

use crate::plan::ObjectQueue;
use crate::plan::VectorObjectQueue;
use crate::policy::sft::SFT;
use crate::policy::space::{CommonSpace, Space};
use crate::util::constants::LOG_BYTES_IN_PAGE;
use crate::util::heap::chunk_map::*;
use crate::util::linear_scan::Region;
use crate::util::VMThread;
use crate::vm::ObjectModel;
use crate::vm::Scanning;
use std::sync::Mutex;

/// The result for `MarkSweepSpace.acquire_block()`. `MarkSweepSpace` will attempt
/// to allocate from abandoned blocks first. If none found, it will get a new block
/// from the page resource.
pub enum BlockAcquireResult {
    Exhausted,
    /// A new block we just acquired from the page resource
    Fresh(Block),
    /// An available block. The block can be directly used if there is any free cell in it.
    AbandonedAvailable(Block),
    /// An unswept block. The block needs to be swept first before it can be used.
    AbandonedUnswept(Block),
}

/// A mark sweep space.
///
/// The space and each free list allocator own some block lists.
/// A block that is in use belongs to exactly one of the block lists. In this case,
/// whoever owns a block list has exclusive access on the blocks in the list.
/// There should be no data race to access blocks. A thread should NOT access a block list
/// if it does not own the block list.
///
/// The table below roughly describes what we do in each phase.
///
/// | Phase          | Allocator local block lists                     | Global abandoned block lists                 | Chunk map |
/// |----------------|-------------------------------------------------|----------------------------------------------|-----------|
/// | Allocation     | Alloc from local                                | Move blocks from global to local block lists | -         |
/// |                | Lazy: sweep local blocks                        |                                              |           |
/// | GC - Prepare   | -                                               | -                                            | Find used chunks, reset block mark, bzero mark bit |
/// | GC - Trace     | Trace object and mark blocks.                   | Trace object and mark blocks.                | -         |
/// |                | No block list access.                           | No block list access.                        |           |
/// | GC - Release   | Lazy: Move blocks to local unswept list         | Lazy: Move blocks to global unswept list     | _         |
/// |                | Eager: Sweep local blocks                       | Eager: Sweep global blocks                   |           |
/// |                | Both: Return local blocks to a temp global list |                                              |           |
/// | GC - End of GC | -                                               | Merge the temp global lists                  | -         |
pub struct MarkSweepSpace<VM: VMBinding> {
    pub common: CommonSpace<VM>,
    pr: BlockPageResource<VM, Block>,
    /// Allocation status for all chunks in MS space
    chunk_map: ChunkMap,
    /// Work packet scheduler
    scheduler: Arc<GCWorkScheduler<VM>>,
    /// Abandoned blocks. If a mutator dies, all its blocks go to this abandoned block
    /// lists. We reuse blocks in these lists in the mutator phase.
    /// The space needs to do the release work for these block lists.
    abandoned: Mutex<AbandonedBlockLists>,
    /// Abandoned blocks during a GC. Each allocator finishes doing release work, and returns
    /// their local blocks to the global lists. Thus we do not need to do release work for
    /// these block lists in the space. These lists are only filled in the release phase,
    /// and will be moved to the abandoned lists above at the end of a GC.
    abandoned_in_gc: Mutex<AbandonedBlockLists>,
    /// Count the number of pending `ReleaseMarkSweepSpace` and `ReleaseMutator` work packets during
    /// the `Release` stage.
    pending_release_packets: AtomicUsize,
}

unsafe impl<VM: VMBinding> Sync for MarkSweepSpace<VM> {}

pub struct AbandonedBlockLists {
    pub available: BlockLists,
    pub unswept: BlockLists,
    pub consumed: BlockLists,
}

impl AbandonedBlockLists {
    fn new() -> Self {
        Self {
            available: new_empty_block_lists(),
            unswept: new_empty_block_lists(),
            consumed: new_empty_block_lists(),
        }
    }

    fn sweep_later<VM: VMBinding>(&mut self, space: &MarkSweepSpace<VM>) {
        for i in 0..MI_BIN_FULL {
            // Release free blocks
            self.available[i].release_blocks(space);
            self.consumed[i].release_blocks(space);
            if cfg!(not(feature = "eager_sweeping")) {
                self.unswept[i].release_blocks(space);
            } else {
                // If we do eager sweeping, we should have no unswept blocks.
                debug_assert!(self.unswept[i].is_empty());
            }

            // For eager sweeping, that's it.  We just release unmarked blocks, and leave marked
            // blocks to be swept later in the `SweepChunk` work packet.

            // For lazy sweeping, we move blocks from available and consumed to unswept.  When an
            // allocator tries to use them, they will sweep the block.
            if cfg!(not(feature = "eager_sweeping")) {
                self.unswept[i].append(&mut self.available[i]);
                self.unswept[i].append(&mut self.consumed[i]);
            }
        }
    }

    fn recycle_blocks(&mut self) {
        for i in 0..MI_BIN_FULL {
            for block in self.consumed[i].iter() {
                if block.has_free_cells() {
                    self.consumed[i].remove(block);
                    self.available[i].push(block);
                }
            }
        }
    }

    fn merge(&mut self, other: &mut Self) {
        for i in 0..MI_BIN_FULL {
            self.available[i].append(&mut other.available[i]);
            self.unswept[i].append(&mut other.unswept[i]);
            self.consumed[i].append(&mut other.consumed[i]);
        }
    }

    #[cfg(debug_assertions)]
    fn assert_empty(&self) {
        for i in 0..MI_BIN_FULL {
            assert!(self.available[i].is_empty());
            assert!(self.unswept[i].is_empty());
            assert!(self.consumed[i].is_empty());
        }
    }
}

impl<VM: VMBinding> SFT for MarkSweepSpace<VM> {
    fn name(&self) -> &'static str {
        self.common.name
    }

    fn is_live(&self, object: crate::util::ObjectReference) -> bool {
        VM::VMObjectModel::LOCAL_MARK_BIT_SPEC.is_marked::<VM>(object, Ordering::SeqCst)
    }

    #[cfg(feature = "object_pinning")]
    fn pin_object(&self, _object: ObjectReference) -> bool {
        false
    }

    #[cfg(feature = "object_pinning")]
    fn unpin_object(&self, _object: ObjectReference) -> bool {
        false
    }

    #[cfg(feature = "object_pinning")]
    fn is_object_pinned(&self, _object: ObjectReference) -> bool {
        false
    }

    fn is_movable(&self) -> bool {
        false
    }

    #[cfg(feature = "sanity")]
    fn is_sane(&self) -> bool {
        true
    }

    fn initialize_object_metadata(&self, _object: crate::util::ObjectReference, _alloc: bool) {
        #[cfg(feature = "vo_bit")]
        crate::util::metadata::vo_bit::set_vo_bit(_object);
    }

    #[cfg(feature = "is_mmtk_object")]
    fn is_mmtk_object(&self, addr: Address) -> Option<ObjectReference> {
        crate::util::metadata::vo_bit::is_vo_bit_set_for_addr(addr)
    }

    #[cfg(feature = "is_mmtk_object")]
    fn find_object_from_internal_pointer(
        &self,
        ptr: Address,
        max_search_bytes: usize,
    ) -> Option<ObjectReference> {
        // We don't need to search more than the max object size in the mark sweep space.
        let search_bytes = usize::min(MAX_OBJECT_SIZE, max_search_bytes);
        crate::util::metadata::vo_bit::find_object_from_internal_pointer::<VM>(ptr, search_bytes)
    }

    fn sft_trace_object(
        &self,
        queue: &mut VectorObjectQueue,
        object: ObjectReference,
        _worker: GCWorkerMutRef,
    ) -> ObjectReference {
        self.trace_object(queue, object)
    }
}

impl<VM: VMBinding> Space<VM> for MarkSweepSpace<VM> {
    fn as_space(&self) -> &dyn Space<VM> {
        self
    }

    fn as_sft(&self) -> &(dyn SFT + Sync + 'static) {
        self
    }

    fn get_page_resource(&self) -> &dyn crate::util::heap::PageResource<VM> {
        &self.pr
    }

    fn maybe_get_page_resource_mut(&mut self) -> Option<&mut dyn PageResource<VM>> {
        Some(&mut self.pr)
    }

    fn initialize_sft(&self, sft_map: &mut dyn crate::policy::sft_map::SFTMap) {
        self.common().initialize_sft(self.as_sft(), sft_map)
    }

    fn common(&self) -> &CommonSpace<VM> {
        &self.common
    }

    fn release_multiple_pages(&mut self, _start: crate::util::Address) {
        todo!()
    }

    fn enumerate_objects(&self, enumerator: &mut dyn ObjectEnumerator) {
        object_enum::enumerate_blocks_from_chunk_map::<Block>(enumerator, &self.chunk_map);
    }
}

impl<VM: VMBinding> crate::policy::gc_work::PolicyTraceObject<VM> for MarkSweepSpace<VM> {
    fn trace_object<Q: ObjectQueue, const KIND: crate::policy::gc_work::TraceKind>(
        &self,
        queue: &mut Q,
        object: ObjectReference,
        _copy: Option<CopySemantics>,
        _worker: &mut GCWorker<VM>,
    ) -> ObjectReference {
        self.trace_object(queue, object)
    }

    fn may_move_objects<const KIND: crate::policy::gc_work::TraceKind>() -> bool {
        false
    }
}

// We cannot allocate objects that are larger than the max bin size.
#[allow(dead_code)]
pub const MAX_OBJECT_SIZE: usize = crate::policy::marksweepspace::native_ms::MI_LARGE_OBJ_SIZE_MAX;

impl<VM: VMBinding> MarkSweepSpace<VM> {
    // Allow ptr_arg as we want to keep the function signature the same as for malloc marksweep
    #[allow(clippy::ptr_arg)]
    pub fn extend_global_side_metadata_specs(_specs: &mut Vec<SideMetadataSpec>) {
        // MarkSweepSpace does not need any special global specs. This method exists, as
        // we need this method for MallocSpace, and we want those two spaces to be used interchangably.
    }

    pub fn new(args: crate::policy::space::PlanCreateSpaceArgs<VM>) -> MarkSweepSpace<VM> {
        let scheduler = args.scheduler.clone();
        let vm_map = args.vm_map;
        let is_discontiguous = args.vmrequest.is_discontiguous();
        let local_specs = {
            metadata::extract_side_metadata(&vec![
                MetadataSpec::OnSide(Block::NEXT_BLOCK_TABLE),
                MetadataSpec::OnSide(Block::PREV_BLOCK_TABLE),
                MetadataSpec::OnSide(Block::FREE_LIST_TABLE),
                MetadataSpec::OnSide(Block::SIZE_TABLE),
                #[cfg(feature = "malloc_native_mimalloc")]
                MetadataSpec::OnSide(Block::LOCAL_FREE_LIST_TABLE),
                #[cfg(feature = "malloc_native_mimalloc")]
                MetadataSpec::OnSide(Block::THREAD_FREE_LIST_TABLE),
                MetadataSpec::OnSide(Block::BLOCK_LIST_TABLE),
                MetadataSpec::OnSide(Block::TLS_TABLE),
                MetadataSpec::OnSide(Block::MARK_TABLE),
                MetadataSpec::OnSide(ChunkMap::ALLOC_TABLE),
                *VM::VMObjectModel::LOCAL_MARK_BIT_SPEC,
            ])
        };
        let common = CommonSpace::new(args.into_policy_args(false, false, local_specs));
        MarkSweepSpace {
            pr: if is_discontiguous {
                BlockPageResource::new_discontiguous(
                    Block::LOG_PAGES,
                    vm_map,
                    scheduler.num_workers(),
                )
            } else {
                BlockPageResource::new_contiguous(
                    Block::LOG_PAGES,
                    common.start,
                    common.extent,
                    vm_map,
                    scheduler.num_workers(),
                )
            },
            common,
            chunk_map: ChunkMap::new(),
            scheduler,
            abandoned: Mutex::new(AbandonedBlockLists::new()),
            abandoned_in_gc: Mutex::new(AbandonedBlockLists::new()),
            pending_release_packets: AtomicUsize::new(0),
        }
    }

    /// Mark an object non-atomically.  If multiple GC worker threads attempt to mark the same
    /// object, more than one of them may return `true`.
    fn attempt_mark_non_atomic(&self, object: ObjectReference) -> bool {
        if !VM::VMObjectModel::LOCAL_MARK_BIT_SPEC.is_marked::<VM>(object, Ordering::SeqCst) {
            VM::VMObjectModel::LOCAL_MARK_BIT_SPEC.mark::<VM>(object, Ordering::SeqCst);
            true
        } else {
            false
        }
    }

    /// Mark an object atomically.
    fn attempt_mark_atomic(&self, object: ObjectReference) -> bool {
        let mark_state = 1u8;

        loop {
            let old_value = VM::VMObjectModel::LOCAL_MARK_BIT_SPEC.load_atomic::<VM, u8>(
                object,
                None,
                Ordering::SeqCst,
            );
            if old_value == mark_state {
                return false;
            }

            if VM::VMObjectModel::LOCAL_MARK_BIT_SPEC
                .compare_exchange_metadata::<VM, u8>(
                    object,
                    old_value,
                    mark_state,
                    None,
                    Ordering::SeqCst,
                    Ordering::SeqCst,
                )
                .is_ok()
            {
                break;
            }
        }
        true
    }

    /// Mark an object.  Return `true` if the object is newly marked.  Return `false` if the object
    /// was already marked.
    fn attempt_mark(&self, object: ObjectReference) -> bool {
        if VM::VMScanning::UNIQUE_OBJECT_ENQUEUING {
            self.attempt_mark_atomic(object)
        } else {
            self.attempt_mark_non_atomic(object)
        }
    }

    fn trace_object<Q: ObjectQueue>(
        &self,
        queue: &mut Q,
        object: ObjectReference,
    ) -> ObjectReference {
        debug_assert!(
            self.in_space(object),
            "Cannot mark an object {} that was not alloced by free list allocator.",
            object,
        );
        if self.attempt_mark(object) {
            let block = Block::containing(object);
            block.set_state(BlockState::Marked);
            queue.enqueue(object);
        }
        object
    }

    pub fn record_new_block(&self, block: Block) {
        block.init();
        self.chunk_map.set(block.chunk(), ChunkState::Allocated);
    }

    pub fn prepare(&mut self) {
        #[cfg(debug_assertions)]
        self.abandoned_in_gc.lock().unwrap().assert_empty();

        // # Safety: MarkSweepSpace reference is always valid within this collection cycle.
        let space = unsafe { &*(self as *const Self) };
        let work_packets = self
            .chunk_map
            .generate_tasks(|chunk| Box::new(PrepareChunkMap { space, chunk }));
        self.scheduler.work_buckets[crate::scheduler::WorkBucketStage::Prepare]
            .bulk_add(work_packets);
    }

    pub fn release(&mut self) {
        let num_mutators = VM::VMActivePlan::number_of_mutators();
        // all ReleaseMutator work packets plus the ReleaseMarkSweepSpace packet
        self.pending_release_packets
            .store(num_mutators + 1, Ordering::SeqCst);

        // Do work in separate work packet in order not to slow down the `Release` work packet which
        // blocks all `ReleaseMutator` packets.
        let space = unsafe { &*(self as *const Self) };
        let work_packet = ReleaseMarkSweepSpace { space };
        self.scheduler.work_buckets[crate::scheduler::WorkBucketStage::Release].add(work_packet);
    }

    pub fn end_of_gc(&mut self) {
        epilogue::debug_assert_counter_zero(
            &self.pending_release_packets,
            "pending_release_packets",
        );
    }

    /// Release a block.
    pub fn release_block(&self, block: Block) {
        self.block_clear_metadata(block);

        block.deinit();
        self.pr.release_block(block);
    }

    pub fn block_clear_metadata(&self, block: Block) {
        for metadata_spec in Block::METADATA_SPECS {
            metadata_spec.set_zero_atomic(block.start(), Ordering::SeqCst);
        }
        #[cfg(feature = "vo_bit")]
        crate::util::metadata::vo_bit::bzero_vo_bit(block.start(), Block::BYTES);
    }

    pub fn acquire_block(&self, tls: VMThread, size: usize, align: usize) -> BlockAcquireResult {
        {
            let mut abandoned = self.abandoned.lock().unwrap();
            let bin = mi_bin::<VM>(size, align);

            {
                let abandoned_available = &mut abandoned.available;
                if !abandoned_available[bin].is_empty() {
                    let block = abandoned_available[bin].pop().unwrap();
                    return BlockAcquireResult::AbandonedAvailable(block);
                }
            }

            {
                let abandoned_unswept = &mut abandoned.unswept;
                if !abandoned_unswept[bin].is_empty() {
                    let block = abandoned_unswept[bin].pop().unwrap();
                    return BlockAcquireResult::AbandonedUnswept(block);
                }
            }
        }

        let acquired = self.acquire(tls, Block::BYTES >> LOG_BYTES_IN_PAGE);
        if acquired.is_zero() {
            BlockAcquireResult::Exhausted
        } else {
            BlockAcquireResult::Fresh(Block::from_unaligned_address(acquired))
        }
    }

    pub fn get_abandoned_block_lists(&self) -> &Mutex<AbandonedBlockLists> {
        &self.abandoned
    }

    pub fn get_abandoned_block_lists_in_gc(&self) -> &Mutex<AbandonedBlockLists> {
        &self.abandoned_in_gc
    }

    pub fn release_packet_done(&self) {
        let old = self.pending_release_packets.fetch_sub(1, Ordering::SeqCst);
        if old == 1 {
            if cfg!(feature = "eager_sweeping") {
                // When doing eager sweeping, we start sweeing now.
                // After sweeping, we will recycle blocks.
                let work_packets = self.generate_sweep_tasks();
                self.scheduler.work_buckets[WorkBucketStage::Release].bulk_add(work_packets);
            } else {
                // When doing lazy sweeping, we recycle blocks now.
                self.recycle_blocks();
            }
        }
    }

    fn generate_sweep_tasks(&self) -> Vec<Box<dyn GCWork<VM>>> {
        let space = unsafe { &*(self as *const Self) };
        let epilogue = Arc::new(RecycleBlocks {
            space,
            counter: AtomicUsize::new(0),
        });
        let tasks = self.chunk_map.generate_tasks(|chunk| {
            Box::new(SweepChunk {
                space,
                chunk,
                epilogue: epilogue.clone(),
            })
        });
        epilogue.counter.store(tasks.len(), Ordering::SeqCst);
        tasks
    }

    fn recycle_blocks(&self) {
        {
            let mut abandoned = self.abandoned.try_lock().unwrap();
            let mut abandoned_in_gc = self.abandoned_in_gc.try_lock().unwrap();

            if cfg!(feature = "eager_sweeping") {
                // When doing eager sweeping, previously consumed blocks may become available after
                // sweeping.  We recycle them.
                abandoned.recycle_blocks();
                abandoned_in_gc.recycle_blocks();
            }

            abandoned.merge(&mut abandoned_in_gc);

            #[cfg(debug_assertions)]
            abandoned_in_gc.assert_empty();
        }

        // BlockPageResource uses worker-local block queues to eliminate contention when releasing
        // blocks, similar to how the MarkSweepSpace caches blocks in `abandoned_in_gc` before
        // returning to the global pool.  We flush the BlockPageResource, too.
        self.pr.flush_all();
    }
}

use crate::scheduler::GCWork;
use crate::MMTK;

struct PrepareChunkMap<VM: VMBinding> {
    space: &'static MarkSweepSpace<VM>,
    chunk: Chunk,
}

impl<VM: VMBinding> GCWork<VM> for PrepareChunkMap<VM> {
    fn do_work(&mut self, _worker: &mut GCWorker<VM>, _mmtk: &'static MMTK<VM>) {
        debug_assert!(self.space.chunk_map.get(self.chunk) == ChunkState::Allocated);
        // number of allocated blocks.
        let mut n_occupied_blocks = 0;
        self.chunk
            .iter_region::<Block>()
            .filter(|block| block.get_state() != BlockState::Unallocated)
            .for_each(|block| {
                // Clear block mark
                block.set_state(BlockState::Unmarked);
                // Count occupied blocks
                n_occupied_blocks += 1
            });
        if n_occupied_blocks == 0 {
            // Set this chunk as free if there is no live blocks.
            self.space.chunk_map.set(self.chunk, ChunkState::Free)
        } else {
            // Otherwise this chunk is occupied, and we reset the mark bit if it is on the side.
            if let MetadataSpec::OnSide(side) = *VM::VMObjectModel::LOCAL_MARK_BIT_SPEC {
                side.bzero_metadata(self.chunk.start(), Chunk::BYTES);
            }
        }
    }
}

struct ReleaseMarkSweepSpace<VM: VMBinding> {
    space: &'static MarkSweepSpace<VM>,
}

impl<VM: VMBinding> GCWork<VM> for ReleaseMarkSweepSpace<VM> {
    fn do_work(&mut self, _worker: &mut GCWorker<VM>, _mmtk: &'static MMTK<VM>) {
        {
            let mut abandoned = self.space.abandoned.lock().unwrap();
            abandoned.sweep_later(self.space);
        }

        self.space.release_packet_done();
    }
}

/// Chunk sweeping work packet.  Only used by eager sweeping to sweep marked blocks after unmarked
/// blocks have been released.
struct SweepChunk<VM: VMBinding> {
    space: &'static MarkSweepSpace<VM>,
    chunk: Chunk,
    /// A destructor invoked when all `SweepChunk` packets are finished.
    epilogue: Arc<RecycleBlocks<VM>>,
}

impl<VM: VMBinding> GCWork<VM> for SweepChunk<VM> {
    fn do_work(&mut self, _worker: &mut GCWorker<VM>, _mmtk: &'static MMTK<VM>) {
        assert_eq!(self.space.chunk_map.get(self.chunk), ChunkState::Allocated);

        // number of allocated blocks.
        let mut allocated_blocks = 0;
        // Iterate over all allocated blocks in this chunk.
        for block in self
            .chunk
            .iter_region::<Block>()
            .filter(|block| block.get_state() != BlockState::Unallocated)
        {
            // We have released unmarked blocks in `ReleaseMarkSweepSpace` and `ReleaseMutator`.
            // We shouldn't see any unmarked blocks now.
            debug_assert_eq!(block.get_state(), BlockState::Marked);
            block.sweep::<VM>();
            allocated_blocks += 1;
        }
        probe!(mmtk, sweep_chunk, allocated_blocks);
        // Set this chunk as free if there is not live blocks.
        if allocated_blocks == 0 {
            self.space.chunk_map.set(self.chunk, ChunkState::Free)
        }
        self.epilogue.finish_one_work_packet();
    }
}

struct RecycleBlocks<VM: VMBinding> {
    space: &'static MarkSweepSpace<VM>,
    counter: AtomicUsize,
}

impl<VM: VMBinding> RecycleBlocks<VM> {
    fn finish_one_work_packet(&self) {
        if 1 == self.counter.fetch_sub(1, Ordering::SeqCst) {
            self.space.recycle_blocks()
        }
    }
}

impl<VM: VMBinding> Drop for RecycleBlocks<VM> {
    fn drop(&mut self) {
        epilogue::debug_assert_counter_zero(&self.counter, "RecycleBlocks::counter");
    }
}