1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
use crate::mmtk::SFT_MAP;
use crate::plan::{ObjectQueue, VectorObjectQueue};
use crate::policy::sft::GCWorkerMutRef;
use crate::policy::sft::SFT;
use crate::policy::space::{CommonSpace, Space};
use crate::util::address::Address;
use crate::util::constants::BYTES_IN_PAGE;
use crate::util::heap::externalpageresource::{ExternalPageResource, ExternalPages};
use crate::util::heap::layout::vm_layout::BYTES_IN_CHUNK;
use crate::util::heap::PageResource;
use crate::util::metadata::mark_bit::MarkState;
#[cfg(feature = "set_unlog_bits_vm_space")]
use crate::util::metadata::MetadataSpec;
use crate::util::object_enum::ObjectEnumerator;
use crate::util::opaque_pointer::*;
use crate::util::ObjectReference;
use crate::vm::{ObjectModel, VMBinding};

use std::sync::atomic::Ordering;

/// A special space for VM/Runtime managed memory. The implementation is similar to [`crate::policy::immortalspace::ImmortalSpace`],
/// except that VM space does not allocate. Instead, the runtime can add regions that are externally managed
/// and mmapped to the space, and allow objects in those regions to be traced in the same way
/// as other MMTk objects allocated by MMTk.
pub struct VMSpace<VM: VMBinding> {
    mark_state: MarkState,
    common: CommonSpace<VM>,
    pr: ExternalPageResource<VM>,
}

impl<VM: VMBinding> SFT for VMSpace<VM> {
    fn name(&self) -> &'static str {
        self.common.name
    }
    fn is_live(&self, _object: ObjectReference) -> bool {
        true
    }
    fn is_reachable(&self, object: ObjectReference) -> bool {
        self.mark_state.is_marked::<VM>(object)
    }
    #[cfg(feature = "object_pinning")]
    fn pin_object(&self, _object: ObjectReference) -> bool {
        false
    }
    #[cfg(feature = "object_pinning")]
    fn unpin_object(&self, _object: ObjectReference) -> bool {
        false
    }
    #[cfg(feature = "object_pinning")]
    fn is_object_pinned(&self, _object: ObjectReference) -> bool {
        true
    }
    fn is_movable(&self) -> bool {
        false
    }
    #[cfg(feature = "sanity")]
    fn is_sane(&self) -> bool {
        true
    }
    fn initialize_object_metadata(&self, object: ObjectReference, _alloc: bool) {
        self.mark_state
            .on_object_metadata_initialization::<VM>(object);
        if self.common.needs_log_bit {
            VM::VMObjectModel::GLOBAL_LOG_BIT_SPEC.mark_as_unlogged::<VM>(object, Ordering::SeqCst);
        }
        #[cfg(feature = "vo_bit")]
        crate::util::metadata::vo_bit::set_vo_bit(object);
    }
    #[cfg(feature = "is_mmtk_object")]
    fn is_mmtk_object(&self, addr: Address) -> Option<ObjectReference> {
        crate::util::metadata::vo_bit::is_vo_bit_set_for_addr(addr)
    }
    #[cfg(feature = "is_mmtk_object")]
    fn find_object_from_internal_pointer(
        &self,
        ptr: Address,
        max_search_bytes: usize,
    ) -> Option<ObjectReference> {
        crate::util::metadata::vo_bit::find_object_from_internal_pointer::<VM>(
            ptr,
            max_search_bytes,
        )
    }
    fn sft_trace_object(
        &self,
        queue: &mut VectorObjectQueue,
        object: ObjectReference,
        _worker: GCWorkerMutRef,
    ) -> ObjectReference {
        self.trace_object(queue, object)
    }
}

impl<VM: VMBinding> Space<VM> for VMSpace<VM> {
    fn as_space(&self) -> &dyn Space<VM> {
        self
    }
    fn as_sft(&self) -> &(dyn SFT + Sync + 'static) {
        self
    }
    fn get_page_resource(&self) -> &dyn PageResource<VM> {
        &self.pr
    }
    fn maybe_get_page_resource_mut(&mut self) -> Option<&mut dyn PageResource<VM>> {
        Some(&mut self.pr)
    }
    fn common(&self) -> &CommonSpace<VM> {
        &self.common
    }

    fn initialize_sft(&self, sft_map: &mut dyn crate::policy::sft_map::SFTMap) {
        // Initialize sft for current external pages. This method is called at the end of plan creation.
        // So we only set SFT for VM regions that are set by options (we skipped sft initialization for them earlier).
        let vm_regions = self.pr.get_external_pages();
        // We should have at most one region at this point (set by the option). If we allow setting multiple VM spaces through options,
        // we can remove this assertion.
        assert!(vm_regions.len() <= 1);
        for external_pages in vm_regions.iter() {
            // Chunk align things.
            let start = external_pages.start.align_down(BYTES_IN_CHUNK);
            let size = external_pages.end.align_up(BYTES_IN_CHUNK) - start;
            // The region should be empty in SFT map -- if they were set before this point, there could be invalid SFT pointers.
            debug_assert_eq!(
                sft_map.get_checked(start).name(),
                crate::policy::sft::EMPTY_SFT_NAME
            );
            // Set SFT
            assert!(sft_map.has_sft_entry(start), "The VM space start (aligned to {}) does not have a valid SFT entry. Possibly the address range is not in the address range we use.", start);
            unsafe {
                sft_map.eager_initialize(self.as_sft(), start, size);
            }
        }
    }

    fn release_multiple_pages(&mut self, _start: Address) {
        unreachable!()
    }

    fn acquire(&self, _tls: VMThread, _pages: usize) -> Address {
        unreachable!()
    }

    fn address_in_space(&self, start: Address) -> bool {
        // The default implementation checks with vm map. But vm map has some assumptions about
        // the address range for spaces and the VM space may break those assumptions (as the space is
        // mmapped by the runtime rather than us). So we we use SFT here.
        SFT_MAP.get_checked(start).name() == self.name()
    }

    fn enumerate_objects(&self, enumerator: &mut dyn ObjectEnumerator) {
        let external_pages = self.pr.get_external_pages();
        for ep in external_pages.iter() {
            enumerator.visit_address_range(ep.start, ep.end);
        }
    }
}

use crate::scheduler::GCWorker;
use crate::util::copy::CopySemantics;

impl<VM: VMBinding> crate::policy::gc_work::PolicyTraceObject<VM> for VMSpace<VM> {
    fn trace_object<Q: ObjectQueue, const KIND: crate::policy::gc_work::TraceKind>(
        &self,
        queue: &mut Q,
        object: ObjectReference,
        _copy: Option<CopySemantics>,
        _worker: &mut GCWorker<VM>,
    ) -> ObjectReference {
        self.trace_object(queue, object)
    }
    fn may_move_objects<const KIND: crate::policy::gc_work::TraceKind>() -> bool {
        false
    }
}

impl<VM: VMBinding> VMSpace<VM> {
    pub fn new(args: crate::policy::space::PlanCreateSpaceArgs<VM>) -> Self {
        let (vm_space_start, vm_space_size) =
            (*args.options.vm_space_start, *args.options.vm_space_size);
        let space = Self {
            mark_state: MarkState::new(),
            pr: ExternalPageResource::new(args.vm_map),
            common: CommonSpace::new(args.into_policy_args(
                false,
                true,
                crate::util::metadata::extract_side_metadata(&[
                    *VM::VMObjectModel::LOCAL_MARK_BIT_SPEC,
                ]),
            )),
        };

        if !vm_space_start.is_zero() {
            // Do not set sft here, as the space may be moved. We do so for those regions in `initialize_sft`.
            space.set_vm_region_inner(vm_space_start, vm_space_size, false);
        }

        space
    }

    pub fn set_vm_region(&mut self, start: Address, size: usize) {
        self.set_vm_region_inner(start, size, true);
    }

    fn set_vm_region_inner(&self, start: Address, size: usize, set_sft: bool) {
        assert!(size > 0);
        assert!(!start.is_zero());

        let end = start + size;

        let chunk_start = start.align_down(BYTES_IN_CHUNK);
        let chunk_end = end.align_up(BYTES_IN_CHUNK);
        let chunk_size = chunk_end - chunk_start;

        // For simplicity, VMSpace has to be outside our available heap range.
        // TODO: Allow VMSpace in our available heap range.
        assert!(Address::range_intersection(
            &(chunk_start..chunk_end),
            &crate::util::heap::layout::available_range()
        )
        .is_empty());

        debug!(
            "Align VM space ({}, {}) to chunk ({}, {})",
            start, end, chunk_start, chunk_end
        );

        // Mark as mapped in mmapper
        self.common.mmapper.mark_as_mapped(chunk_start, chunk_size);
        // Map side metadata
        self.common
            .metadata
            .try_map_metadata_space(chunk_start, chunk_size, self.get_name())
            .unwrap();
        // Insert to vm map: it would be good if we can make VM map aware of the region. However, the region may be outside what we can map in our VM map implementation.
        // self.common.vm_map.insert(chunk_start, chunk_size, self.common.descriptor);
        // Set SFT if we should
        if set_sft {
            assert!(SFT_MAP.has_sft_entry(chunk_start), "The VM space start (aligned to {}) does not have a valid SFT entry. Possibly the address range is not in the address range we use.", chunk_start);
            unsafe {
                SFT_MAP.update(self.as_sft(), chunk_start, chunk_size);
            }
        }

        self.pr.add_new_external_pages(ExternalPages {
            start: start.align_down(BYTES_IN_PAGE),
            end: end.align_up(BYTES_IN_PAGE),
        });

        #[cfg(feature = "set_unlog_bits_vm_space")]
        if self.common.needs_log_bit {
            // Bulk set unlog bits for all addresses in the VM space. This ensures that any
            // modification to the bootimage is logged
            if let MetadataSpec::OnSide(side) = *VM::VMObjectModel::GLOBAL_LOG_BIT_SPEC {
                side.bset_metadata(start, size);
            }
        }
    }

    pub fn prepare(&mut self) {
        self.mark_state.on_global_prepare::<VM>();
        for external_pages in self.pr.get_external_pages().iter() {
            self.mark_state.on_block_reset::<VM>(
                external_pages.start,
                external_pages.end - external_pages.start,
            );
        }
    }

    pub fn release(&mut self) {
        self.mark_state.on_global_release::<VM>();
    }

    pub fn trace_object<Q: ObjectQueue>(
        &self,
        queue: &mut Q,
        object: ObjectReference,
    ) -> ObjectReference {
        #[cfg(feature = "vo_bit")]
        debug_assert!(
            crate::util::metadata::vo_bit::is_vo_bit_set(object),
            "{:x}: VO bit not set",
            object
        );
        debug_assert!(self.in_space(object));
        if self.mark_state.test_and_mark::<VM>(object) {
            queue.enqueue(object);
        }
        object
    }
}