mmtk/scheduler/
work_bucket.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
use super::worker_monitor::WorkerMonitor;
use super::*;
use crate::vm::VMBinding;
use crossbeam::deque::{Injector, Steal, Worker};
use enum_map::Enum;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, Mutex};

struct BucketQueue<VM: VMBinding> {
    queue: Injector<Box<dyn GCWork<VM>>>,
}

impl<VM: VMBinding> BucketQueue<VM> {
    fn new() -> Self {
        Self {
            queue: Injector::new(),
        }
    }

    fn is_empty(&self) -> bool {
        self.queue.is_empty()
    }

    fn steal_batch_and_pop(
        &self,
        dest: &Worker<Box<dyn GCWork<VM>>>,
    ) -> Steal<Box<dyn GCWork<VM>>> {
        self.queue.steal_batch_and_pop(dest)
    }

    fn push(&self, w: Box<dyn GCWork<VM>>) {
        self.queue.push(w);
    }

    fn push_all(&self, ws: Vec<Box<dyn GCWork<VM>>>) {
        for w in ws {
            self.queue.push(w);
        }
    }
}

pub type BucketOpenCondition<VM> = Box<dyn (Fn(&GCWorkScheduler<VM>) -> bool) + Send>;

pub struct WorkBucket<VM: VMBinding> {
    active: AtomicBool,
    queue: BucketQueue<VM>,
    prioritized_queue: Option<BucketQueue<VM>>,
    monitor: Arc<WorkerMonitor>,
    can_open: Option<BucketOpenCondition<VM>>,
    /// After this bucket is activated and all pending work packets (including the packets in this
    /// bucket) are drained, this work packet, if exists, will be added to this bucket.  When this
    /// happens, it will prevent opening subsequent work packets.
    ///
    /// The sentinel work packet may set another work packet as the new sentinel which will be
    /// added to this bucket again after all pending work packets are drained.  This may happend
    /// again and again, causing the GC to stay at the same stage and drain work packets in a loop.
    ///
    /// This is useful for handling weak references that may expand the transitive closure
    /// recursively, such as ephemerons and Java-style SoftReference and finalizers.  Sentinels
    /// can be used repeatedly to discover and process more such objects.
    sentinel: Mutex<Option<Box<dyn GCWork<VM>>>>,
}

impl<VM: VMBinding> WorkBucket<VM> {
    pub(crate) fn new(active: bool, monitor: Arc<WorkerMonitor>) -> Self {
        Self {
            active: AtomicBool::new(active),
            queue: BucketQueue::new(),
            prioritized_queue: None,
            monitor,
            can_open: None,
            sentinel: Mutex::new(None),
        }
    }

    fn notify_one_worker(&self) {
        // If the bucket is not activated, don't notify anyone.
        if !self.is_activated() {
            return;
        }
        // Notify one if there're any parked workers.
        self.monitor.notify_work_available(false);
    }

    pub fn notify_all_workers(&self) {
        // If the bucket is not activated, don't notify anyone.
        if !self.is_activated() {
            return;
        }
        // Notify all if there're any parked workers.
        self.monitor.notify_work_available(true);
    }

    pub fn is_activated(&self) -> bool {
        self.active.load(Ordering::SeqCst)
    }

    /// Enable the bucket
    pub fn activate(&self) {
        self.active.store(true, Ordering::SeqCst);
    }

    /// Test if the bucket is drained
    pub fn is_empty(&self) -> bool {
        self.queue.is_empty()
            && self
                .prioritized_queue
                .as_ref()
                .map(|q| q.is_empty())
                .unwrap_or(true)
    }

    pub fn is_drained(&self) -> bool {
        self.is_activated() && self.is_empty()
    }

    /// Disable the bucket
    pub fn deactivate(&self) {
        debug_assert!(self.queue.is_empty(), "Bucket not drained before close");
        self.active.store(false, Ordering::Relaxed);
    }

    /// Add a work packet to this bucket
    /// Panic if this bucket cannot receive prioritized packets.
    pub fn add_prioritized(&self, work: Box<dyn GCWork<VM>>) {
        self.prioritized_queue.as_ref().unwrap().push(work);
        self.notify_one_worker();
    }

    /// Add a work packet to this bucket
    pub fn add<W: GCWork<VM>>(&self, work: W) {
        self.queue.push(Box::new(work));
        self.notify_one_worker();
    }

    /// Add a work packet to this bucket
    pub fn add_boxed(&self, work: Box<dyn GCWork<VM>>) {
        self.queue.push(work);
        self.notify_one_worker();
    }

    /// Add a work packet to this bucket, but do not notify any workers.
    /// This is useful when the current thread is holding the mutex of `WorkerMonitor` which is
    /// used for notifying workers.  This usually happens if the current thread is the last worker
    /// parked.
    pub(crate) fn add_no_notify<W: GCWork<VM>>(&self, work: W) {
        self.queue.push(Box::new(work));
    }

    /// Like [`WorkBucket::add_no_notify`], but the work is boxed.
    pub(crate) fn add_boxed_no_notify(&self, work: Box<dyn GCWork<VM>>) {
        self.queue.push(work);
    }

    /// Add multiple packets with a higher priority.
    /// Panic if this bucket cannot receive prioritized packets.
    pub fn bulk_add_prioritized(&self, work_vec: Vec<Box<dyn GCWork<VM>>>) {
        self.prioritized_queue.as_ref().unwrap().push_all(work_vec);
        if self.is_activated() {
            self.notify_all_workers();
        }
    }

    /// Add multiple packets
    pub fn bulk_add(&self, work_vec: Vec<Box<dyn GCWork<VM>>>) {
        if work_vec.is_empty() {
            return;
        }
        self.queue.push_all(work_vec);
        if self.is_activated() {
            self.notify_all_workers();
        }
    }

    /// Get a work packet from this bucket
    pub fn poll(&self, worker: &Worker<Box<dyn GCWork<VM>>>) -> Steal<Box<dyn GCWork<VM>>> {
        if !self.is_activated() || self.is_empty() {
            return Steal::Empty;
        }
        if let Some(prioritized_queue) = self.prioritized_queue.as_ref() {
            prioritized_queue
                .steal_batch_and_pop(worker)
                .or_else(|| self.queue.steal_batch_and_pop(worker))
        } else {
            self.queue.steal_batch_and_pop(worker)
        }
    }

    pub fn set_open_condition(
        &mut self,
        pred: impl Fn(&GCWorkScheduler<VM>) -> bool + Send + 'static,
    ) {
        self.can_open = Some(Box::new(pred));
    }

    pub fn set_sentinel(&self, new_sentinel: Box<dyn GCWork<VM>>) {
        let mut sentinel = self.sentinel.lock().unwrap();
        *sentinel = Some(new_sentinel);
    }

    pub fn has_sentinel(&self) -> bool {
        let sentinel = self.sentinel.lock().unwrap();
        sentinel.is_some()
    }

    pub fn update(&self, scheduler: &GCWorkScheduler<VM>) -> bool {
        if let Some(can_open) = self.can_open.as_ref() {
            if !self.is_activated() && can_open(scheduler) {
                self.activate();
                return true;
            }
        }
        false
    }

    pub fn maybe_schedule_sentinel(&self) -> bool {
        debug_assert!(
            self.is_activated(),
            "Attempted to schedule sentinel work while bucket is not open"
        );
        let maybe_sentinel = {
            let mut sentinel = self.sentinel.lock().unwrap();
            sentinel.take()
        };
        if let Some(work) = maybe_sentinel {
            // We don't need to notify other workers because this function is called by the last
            // parked worker.  After this function returns, the caller will notify workers because
            // more work packets become available.
            self.add_boxed_no_notify(work);
            true
        } else {
            false
        }
    }
}

/// This enum defines all the work bucket types. The scheduler
/// will instantiate a work bucket for each stage defined here.
#[derive(Debug, Enum, Copy, Clone, Eq, PartialEq)]
pub enum WorkBucketStage {
    /// This bucket is always open.
    Unconstrained,
    /// Preparation work.  Plans, spaces, GC workers, mutators, etc. should be prepared for GC at
    /// this stage.
    Prepare,
    /// Clear the VO bit metadata.  Mainly used by ImmixSpace.
    #[cfg(feature = "vo_bit")]
    ClearVOBits,
    /// Compute the transtive closure starting from transitively pinning (TP) roots following only strong references.
    /// No objects in this closure are allow to move.
    TPinningClosure,
    /// Trace (non-transitively) pinning roots. Objects pointed by those roots must not move, but their children may. To ensure correctness, these must be processed after TPinningClosure
    PinningRootsTrace,
    /// Compute the transtive closure following only strong references.
    Closure,
    /// Handle Java-style soft references, and potentially expand the transitive closure.
    SoftRefClosure,
    /// Handle Java-style weak references.
    WeakRefClosure,
    /// Resurrect Java-style finalizable objects, and potentially expand the transitive closure.
    FinalRefClosure,
    /// Handle Java-style phantom references.
    PhantomRefClosure,
    /// Let the VM handle VM-specific weak data structures, including weak references, weak
    /// collections, table of finalizable objects, ephemerons, etc.  Potentially expand the
    /// transitive closure.
    ///
    /// NOTE: This stage is intended to replace the Java-specific weak reference handling stages
    /// above.
    VMRefClosure,
    /// Compute the forwarding addresses of objects (mark-compact-only).
    CalculateForwarding,
    /// Scan roots again to initiate another transitive closure to update roots and reference
    /// after computing the forwarding addresses (mark-compact-only).
    SecondRoots,
    /// Update Java-style weak references after computing forwarding addresses (mark-compact-only).
    ///
    /// NOTE: This stage should be updated to adapt to the VM-side reference handling.  It shall
    /// be kept after removing `{Soft,Weak,Final,Phantom}RefClosure`.
    RefForwarding,
    /// Update the list of Java-style finalization cadidates and finalizable objects after
    /// computing forwarding addresses (mark-compact-only).
    FinalizableForwarding,
    /// Let the VM handle the forwarding of reference fields in any VM-specific weak data
    /// structures, including weak references, weak collections, table of finalizable objects,
    /// ephemerons, etc., after computing forwarding addresses (mark-compact-only).
    ///
    /// NOTE: This stage is intended to replace Java-specific forwarding phases above.
    VMRefForwarding,
    /// Compact objects (mark-compact-only).
    Compact,
    /// Work packets that should be done just before GC shall go here.  This includes releasing
    /// resources and setting states in plans, spaces, GC workers, mutators, etc.
    Release,
    /// Resume mutators and end GC.
    Final,
}

impl WorkBucketStage {
    /// The first stop-the-world bucket.
    pub fn first_stw_stage() -> Self {
        WorkBucketStage::from_usize(1)
    }
}