mmtk/util/heap/gc_trigger.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
use atomic::Ordering;
use crate::global_state::GlobalState;
use crate::plan::gc_requester::GCRequester;
use crate::plan::Plan;
use crate::policy::space::Space;
use crate::util::constants::BYTES_IN_PAGE;
use crate::util::conversions;
use crate::util::options::{GCTriggerSelector, Options, DEFAULT_MAX_NURSERY, DEFAULT_MIN_NURSERY};
use crate::vm::VMBinding;
use crate::MMTK;
use std::mem::MaybeUninit;
use std::sync::atomic::AtomicUsize;
use std::sync::Arc;
/// GCTrigger is responsible for triggering GCs based on the given policy.
/// All the decisions about heap limit and GC triggering should be resolved here.
/// Depending on the actual policy, we may either forward the calls either to the plan
/// or to the binding/runtime.
pub struct GCTrigger<VM: VMBinding> {
/// The current plan. This is uninitialized when we create it, and later initialized
/// once we have a fixed address for the plan.
plan: MaybeUninit<&'static dyn Plan<VM = VM>>,
/// The triggering policy.
pub policy: Box<dyn GCTriggerPolicy<VM>>,
gc_requester: Arc<GCRequester<VM>>,
options: Arc<Options>,
state: Arc<GlobalState>,
}
impl<VM: VMBinding> GCTrigger<VM> {
pub fn new(
options: Arc<Options>,
gc_requester: Arc<GCRequester<VM>>,
state: Arc<GlobalState>,
) -> Self {
GCTrigger {
plan: MaybeUninit::uninit(),
policy: match *options.gc_trigger {
GCTriggerSelector::FixedHeapSize(size) => Box::new(FixedHeapSizeTrigger {
total_pages: conversions::bytes_to_pages_up(size),
}),
GCTriggerSelector::DynamicHeapSize(min, max) => 'dynamic_heap_size: {
let min_pages = conversions::bytes_to_pages_up(min);
let max_pages = conversions::bytes_to_pages_up(max);
if *options.plan == crate::util::options::PlanSelector::NoGC {
warn!("Cannot use dynamic heap size with NoGC. Using fixed heap size trigger instead.");
break 'dynamic_heap_size Box::new(FixedHeapSizeTrigger {
total_pages: max_pages,
});
}
Box::new(MemBalancerTrigger::new(min_pages, max_pages))
}
GCTriggerSelector::Delegated => {
<VM::VMCollection as crate::vm::Collection<VM>>::create_gc_trigger()
}
},
options,
gc_requester,
state,
}
}
/// Set the plan. This is called in `create_plan()` after we created a boxed plan.
pub fn set_plan(&mut self, plan: &'static dyn Plan<VM = VM>) {
self.plan.write(plan);
}
fn plan(&self) -> &dyn Plan<VM = VM> {
unsafe { self.plan.assume_init() }
}
/// This method is called periodically by the allocation subsystem
/// (by default, each time a page is consumed), and provides the
/// collector with an opportunity to collect.
///
/// Arguments:
/// * `space_full`: Space request failed, must recover pages within 'space'.
/// * `space`: The space that triggered the poll. This could `None` if the poll is not triggered by a space.
pub fn poll(&self, space_full: bool, space: Option<&dyn Space<VM>>) -> bool {
let plan = unsafe { self.plan.assume_init() };
if self
.policy
.is_gc_required(space_full, space.map(|s| SpaceStats::new(s)), plan)
{
info!(
"[POLL] {}{} ({}/{} pages)",
if let Some(space) = space {
format!("{}: ", space.get_name())
} else {
"".to_string()
},
"Triggering collection",
plan.get_reserved_pages(),
plan.get_total_pages(),
);
self.gc_requester.request();
return true;
}
false
}
pub fn should_do_stress_gc(&self) -> bool {
Self::should_do_stress_gc_inner(&self.state, &self.options)
}
/// Check if we should do a stress GC now. If GC is initialized and the allocation bytes exceeds
/// the stress factor, we should do a stress GC.
pub(crate) fn should_do_stress_gc_inner(state: &GlobalState, options: &Options) -> bool {
state.is_initialized()
&& (state.allocation_bytes.load(Ordering::SeqCst) > *options.stress_factor)
}
/// Check if the heap is full
pub fn is_heap_full(&self) -> bool {
self.policy.is_heap_full(self.plan())
}
/// Return upper bound of the nursery size (in number of bytes)
pub fn get_max_nursery_bytes(&self) -> usize {
use crate::util::options::NurserySize;
debug_assert!(self.plan().generational().is_some());
match *self.options.nursery {
NurserySize::Bounded { min: _, max } => max,
NurserySize::ProportionalBounded { min: _, max } => {
let heap_size_bytes =
conversions::pages_to_bytes(self.policy.get_current_heap_size_in_pages());
let max_bytes = heap_size_bytes as f64 * max;
let max_bytes = conversions::raw_align_up(max_bytes as usize, BYTES_IN_PAGE);
if max_bytes > DEFAULT_MAX_NURSERY {
warn!("Proportional nursery with max size {} ({}) is larger than DEFAULT_MAX_NURSERY ({}). Use DEFAULT_MAX_NURSERY instead.", max, max_bytes, DEFAULT_MAX_NURSERY);
DEFAULT_MAX_NURSERY
} else {
max_bytes
}
}
NurserySize::Fixed(sz) => sz,
}
}
/// Return lower bound of the nursery size (in number of bytes)
pub fn get_min_nursery_bytes(&self) -> usize {
use crate::util::options::NurserySize;
debug_assert!(self.plan().generational().is_some());
match *self.options.nursery {
NurserySize::Bounded { min, max: _ } => min,
NurserySize::ProportionalBounded { min, max: _ } => {
let min_bytes =
conversions::pages_to_bytes(self.policy.get_current_heap_size_in_pages())
as f64
* min;
let min_bytes = conversions::raw_align_up(min_bytes as usize, BYTES_IN_PAGE);
if min_bytes < DEFAULT_MIN_NURSERY {
warn!("Proportional nursery with min size {} ({}) is smaller than DEFAULT_MIN_NURSERY ({}). Use DEFAULT_MIN_NURSERY instead.", min, min_bytes, DEFAULT_MIN_NURSERY);
DEFAULT_MIN_NURSERY
} else {
min_bytes
}
}
NurserySize::Fixed(sz) => sz,
}
}
/// Return upper bound of the nursery size (in number of pages)
pub fn get_max_nursery_pages(&self) -> usize {
crate::util::conversions::bytes_to_pages_up(self.get_max_nursery_bytes())
}
/// Return lower bound of the nursery size (in number of pages)
pub fn get_min_nursery_pages(&self) -> usize {
crate::util::conversions::bytes_to_pages_up(self.get_min_nursery_bytes())
}
}
/// Provides statistics about the space. This is exposed to bindings, as it is used
/// in both [`crate::plan::Plan`] and [`GCTriggerPolicy`].
// This type exists so we do not need to expose the `Space` trait to the bindings.
pub struct SpaceStats<'a, VM: VMBinding>(pub(crate) &'a dyn Space<VM>);
impl<'a, VM: VMBinding> SpaceStats<'a, VM> {
/// Create new SpaceStats.
fn new(space: &'a dyn Space<VM>) -> Self {
Self(space)
}
/// Get the number of reserved pages for the space.
pub fn reserved_pages(&self) -> usize {
self.0.reserved_pages()
}
// We may expose more methods to bindings if they need more information for implementing GC triggers.
// But we should never expose `Space` itself.
}
/// This trait describes a GC trigger policy. A triggering policy have hooks to be informed about
/// GC start/end so they can collect some statistics about GC and allocation. The policy needs to
/// decide the (current) heap limit and decide whether a GC should be performed.
pub trait GCTriggerPolicy<VM: VMBinding>: Sync + Send {
/// Inform the triggering policy that we have pending allocation.
/// Any GC trigger policy with dynamic heap size should take this into account when calculating a new heap size.
/// Failing to do so may result in unnecessay GCs, or result in an infinite loop if the new heap size
/// can never accomodate the pending allocation.
fn on_pending_allocation(&self, _pages: usize) {}
/// Inform the triggering policy that a GC starts.
fn on_gc_start(&self, _mmtk: &'static MMTK<VM>) {}
/// Inform the triggering policy that a GC is about to start the release work. This is called
/// in the global Release work packet. This means we assume a plan
/// do not schedule any work that reclaims memory before the global `Release` work. The current plans
/// satisfy this assumption: they schedule other release work in `plan.release()`.
fn on_gc_release(&self, _mmtk: &'static MMTK<VM>) {}
/// Inform the triggering policy that a GC ends.
fn on_gc_end(&self, _mmtk: &'static MMTK<VM>) {}
/// Is a GC required now? The GC trigger may implement its own heuristics to decide when
/// a GC should be performed. However, we recommend the implementation to do its own checks
/// first, and always call `plan.collection_required(space_full, space)` at the end as a fallback to see if the plan needs
/// to do a GC.
///
/// Arguments:
/// * `space_full`: Is any space full?
/// * `space`: The space that is full. The GC trigger may access some stats of the space.
/// * `plan`: The reference to the plan in use.
fn is_gc_required(
&self,
space_full: bool,
space: Option<SpaceStats<VM>>,
plan: &dyn Plan<VM = VM>,
) -> bool;
/// Is current heap full?
fn is_heap_full(&self, plan: &dyn Plan<VM = VM>) -> bool;
/// Return the current heap size (in pages)
fn get_current_heap_size_in_pages(&self) -> usize;
/// Return the upper bound of heap size
fn get_max_heap_size_in_pages(&self) -> usize;
/// Can the heap size grow?
fn can_heap_size_grow(&self) -> bool;
}
/// A simple GC trigger that uses a fixed heap size.
pub struct FixedHeapSizeTrigger {
total_pages: usize,
}
impl<VM: VMBinding> GCTriggerPolicy<VM> for FixedHeapSizeTrigger {
fn is_gc_required(
&self,
space_full: bool,
space: Option<SpaceStats<VM>>,
plan: &dyn Plan<VM = VM>,
) -> bool {
// Let the plan decide
plan.collection_required(space_full, space)
}
fn is_heap_full(&self, plan: &dyn Plan<VM = VM>) -> bool {
// If reserved pages is larger than the total pages, the heap is full.
plan.get_reserved_pages() > self.total_pages
}
fn get_current_heap_size_in_pages(&self) -> usize {
self.total_pages
}
fn get_max_heap_size_in_pages(&self) -> usize {
self.total_pages
}
fn can_heap_size_grow(&self) -> bool {
false
}
}
use atomic_refcell::AtomicRefCell;
use std::time::Instant;
/// An implementation of MemBalancer (Optimal heap limits for reducing browser memory use, <https://dl.acm.org/doi/10.1145/3563323>)
/// We use MemBalancer to decide a heap limit between the min heap and the max heap.
/// The current implementation is a simplified version of mem balancer and it does not take collection/allocation speed into account,
/// and uses a fixed constant instead.
// TODO: implement a complete mem balancer.
pub struct MemBalancerTrigger {
/// The min heap size
min_heap_pages: usize,
/// The max heap size
max_heap_pages: usize,
/// The current heap size
current_heap_pages: AtomicUsize,
/// The number of pending allocation pages. The allocation requests for them have failed, and a GC is triggered.
/// We will need to take them into consideration so that the new heap size can accomodate those allocations.
pending_pages: AtomicUsize,
/// Statistics
stats: AtomicRefCell<MemBalancerStats>,
}
#[derive(Copy, Clone, Debug)]
struct MemBalancerStats {
// Allocation/collection stats in the previous estimation. We keep this so we can use them to smooth the current value
/// Previous allocated memory in pages.
allocation_pages_prev: Option<f64>,
/// Previous allocation duration in secs
allocation_time_prev: Option<f64>,
/// Previous collected memory in pages
collection_pages_prev: Option<f64>,
/// Previous colleciton duration in secs
collection_time_prev: Option<f64>,
// Allocation/collection stats in this estimation.
/// Allocated memory in pages
allocation_pages: f64,
/// Allocation duration in secs
allocation_time: f64,
/// Collected memory in pages (memory traversed during collection)
collection_pages: f64,
/// Collection duration in secs
collection_time: f64,
/// The time when this GC starts
gc_start_time: Instant,
/// The time when this GC ends
gc_end_time: Instant,
/// The live pages before we release memory.
gc_release_live_pages: usize,
/// The live pages at the GC end
gc_end_live_pages: usize,
}
impl std::default::Default for MemBalancerStats {
fn default() -> Self {
let now = Instant::now();
Self {
allocation_pages_prev: None,
allocation_time_prev: None,
collection_pages_prev: None,
collection_time_prev: None,
allocation_pages: 0f64,
allocation_time: 0f64,
collection_pages: 0f64,
collection_time: 0f64,
gc_start_time: now,
gc_end_time: now,
gc_release_live_pages: 0,
gc_end_live_pages: 0,
}
}
}
use crate::plan::GenerationalPlan;
impl MemBalancerStats {
// Collect mem stats for generational plans:
// * We ignore nursery GCs.
// * allocation = objects in mature space = promoted + pretentured = live pages in mature space before release - live pages at the end of last mature GC
// * collection = live pages in mature space at the end of GC - live pages in mature space before release
fn generational_mem_stats_on_gc_start<VM: VMBinding>(
&mut self,
_plan: &dyn GenerationalPlan<VM = VM>,
) {
// We don't need to do anything
}
fn generational_mem_stats_on_gc_release<VM: VMBinding>(
&mut self,
plan: &dyn GenerationalPlan<VM = VM>,
) {
if !plan.is_current_gc_nursery() {
self.gc_release_live_pages = plan.get_mature_reserved_pages();
// Calculate the promoted pages (including pre tentured objects)
let promoted = self
.gc_release_live_pages
.saturating_sub(self.gc_end_live_pages);
self.allocation_pages = promoted as f64;
trace!(
"promoted = mature live before release {} - mature live at prev gc end {} = {}",
self.gc_release_live_pages,
self.gc_end_live_pages,
promoted
);
trace!(
"allocated pages (accumulated to) = {}",
self.allocation_pages
);
}
}
/// Return true if we should compute a new heap limit. Only do so at the end of a mature GC
fn generational_mem_stats_on_gc_end<VM: VMBinding>(
&mut self,
plan: &dyn GenerationalPlan<VM = VM>,
) -> bool {
if !plan.is_current_gc_nursery() {
self.gc_end_live_pages = plan.get_mature_reserved_pages();
// Use live pages as an estimate for pages traversed during GC
self.collection_pages = self.gc_end_live_pages as f64;
trace!(
"collected pages = mature live at gc end {} - mature live at gc release {} = {}",
self.gc_release_live_pages,
self.gc_end_live_pages,
self.collection_pages
);
true
} else {
false
}
}
// Collect mem stats for non generational plans
// * allocation = live pages at the start of GC - live pages at the end of last GC
// * collection = live pages at the end of GC - live pages before release
fn non_generational_mem_stats_on_gc_start<VM: VMBinding>(&mut self, mmtk: &'static MMTK<VM>) {
self.allocation_pages = mmtk
.get_plan()
.get_reserved_pages()
.saturating_sub(self.gc_end_live_pages) as f64;
trace!(
"allocated pages = used {} - live in last gc {} = {}",
mmtk.get_plan().get_reserved_pages(),
self.gc_end_live_pages,
self.allocation_pages
);
}
fn non_generational_mem_stats_on_gc_release<VM: VMBinding>(&mut self, mmtk: &'static MMTK<VM>) {
self.gc_release_live_pages = mmtk.get_plan().get_reserved_pages();
trace!("live before release = {}", self.gc_release_live_pages);
}
fn non_generational_mem_stats_on_gc_end<VM: VMBinding>(&mut self, mmtk: &'static MMTK<VM>) {
self.gc_end_live_pages = mmtk.get_plan().get_reserved_pages();
trace!("live pages = {}", self.gc_end_live_pages);
// Use live pages as an estimate for pages traversed during GC
self.collection_pages = self.gc_end_live_pages as f64;
trace!(
"collected pages = live at gc end {} - live at gc release {} = {}",
self.gc_release_live_pages,
self.gc_end_live_pages,
self.collection_pages
);
}
}
impl<VM: VMBinding> GCTriggerPolicy<VM> for MemBalancerTrigger {
fn is_gc_required(
&self,
space_full: bool,
space: Option<SpaceStats<VM>>,
plan: &dyn Plan<VM = VM>,
) -> bool {
// Let the plan decide
plan.collection_required(space_full, space)
}
fn on_pending_allocation(&self, pages: usize) {
self.pending_pages.fetch_add(pages, Ordering::SeqCst);
}
fn on_gc_start(&self, mmtk: &'static MMTK<VM>) {
trace!("=== on_gc_start ===");
self.access_stats(|stats| {
stats.gc_start_time = Instant::now();
stats.allocation_time += (stats.gc_start_time - stats.gc_end_time).as_secs_f64();
trace!(
"gc_start = {:?}, allocation_time = {}",
stats.gc_start_time,
stats.allocation_time
);
if let Some(plan) = mmtk.get_plan().generational() {
stats.generational_mem_stats_on_gc_start(plan);
} else {
stats.non_generational_mem_stats_on_gc_start(mmtk);
}
});
}
fn on_gc_release(&self, mmtk: &'static MMTK<VM>) {
trace!("=== on_gc_release ===");
self.access_stats(|stats| {
if let Some(plan) = mmtk.get_plan().generational() {
stats.generational_mem_stats_on_gc_release(plan);
} else {
stats.non_generational_mem_stats_on_gc_release(mmtk);
}
});
}
fn on_gc_end(&self, mmtk: &'static MMTK<VM>) {
trace!("=== on_gc_end ===");
self.access_stats(|stats| {
stats.gc_end_time = Instant::now();
stats.collection_time += (stats.gc_end_time - stats.gc_start_time).as_secs_f64();
trace!(
"gc_end = {:?}, collection_time = {}",
stats.gc_end_time,
stats.collection_time
);
if let Some(plan) = mmtk.get_plan().generational() {
if stats.generational_mem_stats_on_gc_end(plan) {
self.compute_new_heap_limit(
mmtk.get_plan().get_reserved_pages(),
// We reserve an extra of min nursery. This ensures that we will not trigger
// a full heap GC in the next GC (if available pages is smaller than min nursery, we will force a full heap GC)
mmtk.get_plan().get_collection_reserved_pages()
+ mmtk.gc_trigger.get_min_nursery_pages(),
stats,
);
}
} else {
stats.non_generational_mem_stats_on_gc_end(mmtk);
self.compute_new_heap_limit(
mmtk.get_plan().get_reserved_pages(),
mmtk.get_plan().get_collection_reserved_pages(),
stats,
);
}
});
// Clear pending allocation pages at the end of GC, no matter we used it or not.
self.pending_pages.store(0, Ordering::SeqCst);
}
fn is_heap_full(&self, plan: &dyn Plan<VM = VM>) -> bool {
// If reserved pages is larger than the current heap size, the heap is full.
plan.get_reserved_pages() > self.current_heap_pages.load(Ordering::Relaxed)
}
fn get_current_heap_size_in_pages(&self) -> usize {
self.current_heap_pages.load(Ordering::Relaxed)
}
fn get_max_heap_size_in_pages(&self) -> usize {
self.max_heap_pages
}
fn can_heap_size_grow(&self) -> bool {
self.current_heap_pages.load(Ordering::Relaxed) < self.max_heap_pages
}
}
impl MemBalancerTrigger {
fn new(min_heap_pages: usize, max_heap_pages: usize) -> Self {
Self {
min_heap_pages,
max_heap_pages,
pending_pages: AtomicUsize::new(0),
// start with min heap
current_heap_pages: AtomicUsize::new(min_heap_pages),
stats: AtomicRefCell::new(Default::default()),
}
}
fn access_stats<F>(&self, mut f: F)
where
F: FnMut(&mut MemBalancerStats),
{
let mut stats = self.stats.borrow_mut();
f(&mut stats);
}
fn compute_new_heap_limit(
&self,
live: usize,
extra_reserve: usize,
stats: &mut MemBalancerStats,
) {
trace!("compute new heap limit: {:?}", stats);
// Constants from the original paper
const ALLOCATION_SMOOTH_FACTOR: f64 = 0.95;
const COLLECTION_SMOOTH_FACTOR: f64 = 0.5;
const TUNING_FACTOR: f64 = 0.2;
// Smooth memory/time for allocation/collection
let smooth = |prev: Option<f64>, cur, factor| {
prev.map(|p| p * factor + cur * (1.0f64 - factor))
.unwrap_or(cur)
};
let alloc_mem = smooth(
stats.allocation_pages_prev,
stats.allocation_pages,
ALLOCATION_SMOOTH_FACTOR,
);
let alloc_time = smooth(
stats.allocation_time_prev,
stats.allocation_time,
ALLOCATION_SMOOTH_FACTOR,
);
let gc_mem = smooth(
stats.collection_pages_prev,
stats.collection_pages,
COLLECTION_SMOOTH_FACTOR,
);
let gc_time = smooth(
stats.collection_time_prev,
stats.collection_time,
COLLECTION_SMOOTH_FACTOR,
);
trace!(
"after smoothing, alloc mem = {}, alloc_time = {}",
alloc_mem,
alloc_time
);
trace!(
"after smoothing, gc mem = {}, gc_time = {}",
gc_mem,
gc_time
);
// We got the smoothed stats. Now save the current stats as previous stats
stats.allocation_pages_prev = Some(stats.allocation_pages);
stats.allocation_pages = 0f64;
stats.allocation_time_prev = Some(stats.allocation_time);
stats.allocation_time = 0f64;
stats.collection_pages_prev = Some(stats.collection_pages);
stats.collection_pages = 0f64;
stats.collection_time_prev = Some(stats.collection_time);
stats.collection_time = 0f64;
// Calculate the square root
let e: f64 = if alloc_mem != 0f64 && gc_mem != 0f64 && alloc_time != 0f64 && gc_time != 0f64
{
let mut e = live as f64;
e *= alloc_mem / alloc_time;
e /= TUNING_FACTOR;
e /= gc_mem / gc_time;
e.sqrt()
} else {
// If any collected stat is abnormal, we use the fallback heuristics.
(live as f64 * 4096f64).sqrt()
};
// Get pending allocations
let pending_pages = self.pending_pages.load(Ordering::SeqCst);
// This is the optimal heap limit due to mem balancer. We will need to clamp the value to the defined min/max range.
let optimal_heap = live + e as usize + extra_reserve + pending_pages;
trace!(
"optimal = live {} + sqrt(live) {} + extra {}",
live,
e,
extra_reserve
);
// The new heap size must be within min/max.
let new_heap = optimal_heap.clamp(self.min_heap_pages, self.max_heap_pages);
debug!(
"MemBalander: new heap limit = {} pages (optimal = {}, clamped to [{}, {}])",
new_heap, optimal_heap, self.min_heap_pages, self.max_heap_pages
);
self.current_heap_pages.store(new_heap, Ordering::Relaxed);
}
}