mmtk/util/
linear_scan.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
use crate::util::metadata::vo_bit;
use crate::util::Address;
use crate::util::ObjectReference;
use crate::vm::ObjectModel;
use crate::vm::VMBinding;
use std::marker::PhantomData;

// FIXME: MarkCompact uses linear scanning to discover allocated objects in the MarkCompactSpace.
// It should use a local metadata (specific to the MarkCompactSpace) for that purpose.
// In the future, we should let MarkCompact do linear scanning using its local metadata instead.

/// Iterate over an address range, and find each object by VO bit.
/// ATOMIC_LOAD_VO_BIT can be set to false if it is known that loading VO bit
/// non-atomically is correct (e.g. a single thread is scanning this address range, and
/// it is the only thread that accesses VO bit).
pub struct ObjectIterator<VM: VMBinding, S: LinearScanObjectSize, const ATOMIC_LOAD_VO_BIT: bool> {
    start: Address,
    end: Address,
    cursor: Address,
    _p: PhantomData<(VM, S)>,
}

impl<VM: VMBinding, S: LinearScanObjectSize, const ATOMIC_LOAD_VO_BIT: bool>
    ObjectIterator<VM, S, ATOMIC_LOAD_VO_BIT>
{
    /// Create an iterator for the address range. The caller must ensure
    /// that the VO bit metadata is mapped for the address range.
    pub fn new(start: Address, end: Address) -> Self {
        debug_assert!(start < end);
        debug_assert!(
            start.is_aligned_to(ObjectReference::ALIGNMENT),
            "start is not word-aligned: {start}"
        );
        debug_assert!(
            end.is_aligned_to(ObjectReference::ALIGNMENT),
            "end is not word-aligned: {end}"
        );
        ObjectIterator {
            start,
            end,
            cursor: start,
            _p: PhantomData,
        }
    }
}

impl<VM: VMBinding, S: LinearScanObjectSize, const ATOMIC_LOAD_VO_BIT: bool> std::iter::Iterator
    for ObjectIterator<VM, S, ATOMIC_LOAD_VO_BIT>
{
    type Item = ObjectReference;

    fn next(&mut self) -> Option<<Self as Iterator>::Item> {
        while self.cursor < self.end {
            let is_object = if ATOMIC_LOAD_VO_BIT {
                vo_bit::is_vo_bit_set_for_addr(self.cursor)
            } else {
                unsafe { vo_bit::is_vo_bit_set_unsafe(self.cursor) }
            };

            if let Some(object) = is_object {
                self.cursor += S::size(object);
                return Some(object);
            } else {
                self.cursor += VM::MIN_ALIGNMENT;
            }
        }

        None
    }
}

/// Describe object size for linear scan. Different policies may have
/// different object sizes (e.g. extra metadata, etc)
pub trait LinearScanObjectSize {
    /// The object size in bytes for the given object.
    fn size(object: ObjectReference) -> usize;
}

/// Default object size as ObjectModel::get_current_size()
pub struct DefaultObjectSize<VM: VMBinding>(PhantomData<VM>);
impl<VM: VMBinding> LinearScanObjectSize for DefaultObjectSize<VM> {
    fn size(object: ObjectReference) -> usize {
        VM::VMObjectModel::get_current_size(object)
    }
}

/// Region represents a memory region with a properly aligned address as its start and a fixed size for the region.
/// Region provides a set of utility methods, along with a RegionIterator that linearly scans at the step of a region.
pub trait Region: Copy + PartialEq + PartialOrd {
    /// log2 of the size in bytes for the region.
    const LOG_BYTES: usize;
    /// The size in bytes for the region.
    const BYTES: usize = 1 << Self::LOG_BYTES;

    /// Create a region from an address that is aligned to the region boundary. The method should panic if the address
    /// is not properly aligned to the region. For performance, this method should always be inlined.
    fn from_aligned_address(address: Address) -> Self;
    /// Return the start address of the region. For performance, this method should always be inlined.
    fn start(&self) -> Address;

    /// Create a region from an arbitrary address.
    fn from_unaligned_address(address: Address) -> Self {
        Self::from_aligned_address(Self::align(address))
    }

    /// Align the address to the region.
    fn align(address: Address) -> Address {
        address.align_down(Self::BYTES)
    }
    /// Check if an address is aligned to the region.
    fn is_aligned(address: Address) -> bool {
        address.is_aligned_to(Self::BYTES)
    }

    /// Return the end address of the region. Note that the end address is not in the region.
    fn end(&self) -> Address {
        self.start() + Self::BYTES
    }
    /// Return the next region after this one.
    fn next(&self) -> Self {
        self.next_nth(1)
    }
    /// Return the next nth region after this one.
    fn next_nth(&self, n: usize) -> Self {
        debug_assert!(self.start().as_usize() < usize::MAX - (n << Self::LOG_BYTES));
        Self::from_aligned_address(self.start() + (n << Self::LOG_BYTES))
    }
    /// Return the region that contains the object.
    fn containing(object: ObjectReference) -> Self {
        Self::from_unaligned_address(object.to_raw_address())
    }
    /// Check if the given address is in the region.
    fn includes_address(&self, addr: Address) -> bool {
        Self::align(addr) == self.start()
    }
}

/// An iterator for contiguous regions.
pub struct RegionIterator<R: Region> {
    current: R,
    end: R,
}

impl<R: Region> RegionIterator<R> {
    /// Create an iterator from the start region (inclusive) to the end region (exclusive).
    pub fn new(start: R, end: R) -> Self {
        Self {
            current: start,
            end,
        }
    }
}

impl<R: Region> Iterator for RegionIterator<R> {
    type Item = R;

    fn next(&mut self) -> Option<R> {
        if self.current < self.end {
            let ret = self.current;
            self.current = self.current.next();
            Some(ret)
        } else {
            None
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::util::constants::LOG_BYTES_IN_PAGE;

    const PAGE_SIZE: usize = 1 << LOG_BYTES_IN_PAGE;

    #[derive(Copy, Clone, Debug, PartialEq, PartialOrd)]
    struct Page(Address);

    impl Region for Page {
        const LOG_BYTES: usize = LOG_BYTES_IN_PAGE as usize;

        fn from_aligned_address(address: Address) -> Self {
            debug_assert!(address.is_aligned_to(Self::BYTES));
            Self(address)
        }

        fn start(&self) -> Address {
            self.0
        }
    }

    #[test]
    fn test_region_methods() {
        let addr4k = unsafe { Address::from_usize(PAGE_SIZE) };
        let addr4k1 = unsafe { Address::from_usize(PAGE_SIZE + 1) };

        // align
        debug_assert_eq!(Page::align(addr4k), addr4k);
        debug_assert_eq!(Page::align(addr4k1), addr4k);
        debug_assert!(Page::is_aligned(addr4k));
        debug_assert!(!Page::is_aligned(addr4k1));

        let page = Page::from_aligned_address(addr4k);
        // start/end
        debug_assert_eq!(page.start(), addr4k);
        debug_assert_eq!(page.end(), addr4k + PAGE_SIZE);
        // next
        debug_assert_eq!(page.next().start(), addr4k + PAGE_SIZE);
        debug_assert_eq!(page.next_nth(1).start(), addr4k + PAGE_SIZE);
        debug_assert_eq!(page.next_nth(2).start(), addr4k + 2 * PAGE_SIZE);
    }

    #[test]
    fn test_region_iterator_normal() {
        let addr4k = unsafe { Address::from_usize(PAGE_SIZE) };
        let page = Page::from_aligned_address(addr4k);
        let end_page = page.next_nth(5);

        let mut results = vec![];
        let iter = RegionIterator::new(page, end_page);
        for p in iter {
            results.push(p);
        }
        debug_assert_eq!(
            results,
            vec![
                page,
                page.next_nth(1),
                page.next_nth(2),
                page.next_nth(3),
                page.next_nth(4)
            ]
        );
    }

    #[test]
    fn test_region_iterator_same_start_end() {
        let addr4k = unsafe { Address::from_usize(PAGE_SIZE) };
        let page = Page::from_aligned_address(addr4k);

        let mut results = vec![];
        let iter = RegionIterator::new(page, page);
        for p in iter {
            results.push(p);
        }
        debug_assert_eq!(results, vec![]);
    }

    #[test]
    fn test_region_iterator_smaller_end() {
        let addr4k = unsafe { Address::from_usize(PAGE_SIZE) };
        let page = Page::from_aligned_address(addr4k);
        let end = Page::from_aligned_address(Address::ZERO);

        let mut results = vec![];
        let iter = RegionIterator::new(page, end);
        for p in iter {
            results.push(p);
        }
        debug_assert_eq!(results, vec![]);
    }
}