mmtk/util/metadata/
header_metadata.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
//! This module provides a default implementation of the access functions for in-header metadata.

use atomic::Ordering;
use std::fmt;
use std::sync::atomic::AtomicU8;

use crate::util::constants::{BITS_IN_BYTE, LOG_BITS_IN_BYTE};
use crate::util::metadata::metadata_val_traits::*;
use crate::util::Address;
use num_traits::FromPrimitive;

const LOG_BITS_IN_U16: usize = 4;
const BITS_IN_U16: usize = 1 << LOG_BITS_IN_U16;
const LOG_BITS_IN_U32: usize = 5;
const BITS_IN_U32: usize = 1 << LOG_BITS_IN_U32;
const LOG_BITS_IN_U64: usize = 6;
const BITS_IN_U64: usize = 1 << LOG_BITS_IN_U64;

/// This struct stores the specification of a header metadata bit-set.
/// It supports either bits metadata of 1-7 bits in the same byte, or u8/u16/u32/u64 at an offset of their natural alignment.
///
/// For performance reasons, objects of this struct should be constants.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct HeaderMetadataSpec {
    /// `bit_offset` is the index of the starting bit from which the data should be read or written.
    /// It is counted from the right (least significant bit) of the byte.
    /// Positive values refer to the bit positions within the current byte, starting with 0 for the
    /// least significant bit (rightmost) up to 7 for the most significant bit (leftmost).
    /// Negative values are used to refer to bit positions in the previous bytes, where -1 indicates
    /// the most significant bit (leftmost) of the byte immediately before the current one.
    pub bit_offset: isize,
    /// `num_of_bits` specifies the number of consecutive bits to be read or written starting from the `bit_offset`.
    /// This value is used to define the size of the data field in bits. For instance, if `num_of_bits` is set to 1,
    /// only a single bit is considered, whereas a value of 8 would indicate a full byte.
    /// This field must be a positive integer and typically should not exceed the size of the data type that
    /// will hold the extracted value (for example, 8 bits for a `u8`, 16 bits for a `u16`, etc.).
    /// The `num_of_bits` together with the `bit_offset` enables the extraction of bit fields of arbitrary
    /// length and position, facilitating bit-level data manipulation.
    pub num_of_bits: usize,
}

impl HeaderMetadataSpec {
    /// We only allow mask for u8/u16/u32/u64/usize. If a mask is used with a spec that does not allow it, this method will panic.
    ///
    /// We allow using mask for certain operations. The reason for mask is that for header metadata, we may have overlapping metadata specs. For example,
    /// a forwarding pointer is pointer-size, but its last 2 bits could be used as forwarding bits. In that case, all accesses to the forwarding pointer
    /// spec should be used with a mask to make sure that we exclude the forwarding bits.
    #[cfg(debug_assertions)]
    fn assert_mask<T: MetadataValue>(&self, mask: Option<T>) {
        debug_assert!(mask.is_none() || self.num_of_bits >= 8, "optional_mask is only supported for 8X-bits in-header metadata. Problematic MetadataSpec: ({:?})", self);
    }

    /// Assert if this is a valid spec.
    #[cfg(debug_assertions)]
    fn assert_spec<T: MetadataValue>(&self) {
        if self.num_of_bits == 0 {
            panic!("Metadata of 0 bits is not allowed.");
        } else if self.num_of_bits < 8 {
            debug_assert!(
                (self.bit_offset >> LOG_BITS_IN_BYTE)
                    == ((self.bit_offset + self.num_of_bits as isize - 1) >> LOG_BITS_IN_BYTE),
                "Metadata << 8-bits: ({:?}) stretches over two bytes!",
                self
            );
        } else if self.num_of_bits >= 8 && self.num_of_bits <= 64 {
            debug_assert!(
                self.bit_offset.trailing_zeros() >= T::LOG2,
                "{:?}: bit_offset must be aligned to {}",
                self,
                1 << T::LOG2
            );
        } else {
            // num_of_bits larger than 64
            unreachable!("Metadata that is larger than 64-bits is not supported")
        }
    }

    fn byte_offset(&self) -> isize {
        self.bit_offset >> LOG_BITS_IN_BYTE
    }

    fn meta_addr(&self, header: Address) -> Address {
        header + self.byte_offset()
    }

    // Some common methods for header metadata that is smaller than 1 byte.

    /// Get the bit shift (the bit distance from the lowest bit to the bits location defined in the spec),
    /// and the mask (used to extract value for the bits defined in the spec).
    fn get_shift_and_mask_for_bits(&self) -> (isize, u8) {
        debug_assert!(self.num_of_bits < BITS_IN_BYTE);
        let byte_offset = self.byte_offset();
        let bit_shift = self.bit_offset - (byte_offset << LOG_BITS_IN_BYTE);
        let mask = ((1u8 << self.num_of_bits) - 1) << bit_shift;
        (bit_shift, mask)
    }

    /// Extract bits from a raw byte, and put it to the lowest bits.
    fn get_bits_from_u8(&self, raw_byte: u8) -> u8 {
        debug_assert!(self.num_of_bits < BITS_IN_BYTE);
        let (bit_shift, mask) = self.get_shift_and_mask_for_bits();
        (raw_byte & mask) >> bit_shift
    }

    /// Set bits to a raw byte. `set_val` has the valid value in its lowest bits.
    fn set_bits_to_u8(&self, raw_byte: u8, set_val: u8) -> u8 {
        debug_assert!(self.num_of_bits < BITS_IN_BYTE);
        debug_assert!(
            set_val < (1 << self.num_of_bits),
            "{:b} exceeds the maximum value of {} bits in the spec",
            set_val,
            self.num_of_bits
        );
        let (bit_shift, mask) = self.get_shift_and_mask_for_bits();
        (raw_byte & !mask) | (set_val << bit_shift)
    }

    /// Truncate a value based on the spec.
    fn truncate_bits_in_u8(&self, val: u8) -> u8 {
        debug_assert!(self.num_of_bits < BITS_IN_BYTE);
        val & ((1 << self.num_of_bits) - 1)
    }

    /// This function provides a default implementation for the `load_metadata` method from the `ObjectModel` trait.
    ///
    /// # Safety
    /// This is a non-atomic load, thus not thread-safe.
    pub unsafe fn load<T: MetadataValue>(&self, header: Address, optional_mask: Option<T>) -> T {
        self.load_inner::<T>(header, optional_mask, None)
    }

    /// This function provides a default implementation for the `load_metadata_atomic` method from the `ObjectModel` trait.
    pub fn load_atomic<T: MetadataValue>(
        &self,
        header: Address,
        optional_mask: Option<T>,
        ordering: Ordering,
    ) -> T {
        self.load_inner::<T>(header, optional_mask, Some(ordering))
    }

    fn load_inner<T: MetadataValue>(
        &self,
        header: Address,
        optional_mask: Option<T>,
        atomic_ordering: Option<Ordering>,
    ) -> T {
        #[cfg(debug_assertions)]
        {
            self.assert_mask::<T>(optional_mask);
            self.assert_spec::<T>();
        }

        // metadata smaller than 8-bits is special in that more than one metadata value may be included in one AtomicU8 operation, and extra shift and mask is required
        let res: T = if self.num_of_bits < 8 {
            let byte_val = unsafe {
                if let Some(order) = atomic_ordering {
                    (self.meta_addr(header)).atomic_load::<AtomicU8>(order)
                } else {
                    (self.meta_addr(header)).load::<u8>()
                }
            };

            FromPrimitive::from_u8(self.get_bits_from_u8(byte_val)).unwrap()
        } else {
            unsafe {
                if let Some(order) = atomic_ordering {
                    T::load_atomic(self.meta_addr(header), order)
                } else {
                    (self.meta_addr(header)).load::<T>()
                }
            }
        };

        if let Some(mask) = optional_mask {
            res.bitand(mask)
        } else {
            res
        }
    }

    /// This function provides a default implementation for the `store_metadata` method from the `ObjectModel` trait.
    ///
    /// Note: this function does compare-and-swap in a busy loop. So, unlike `compare_exchange_metadata`, this operation will always success.
    ///
    /// # Safety
    /// This is a non-atomic store, thus not thread-safe.
    pub unsafe fn store<T: MetadataValue>(
        &self,
        header: Address,
        val: T,
        optional_mask: Option<T>,
    ) {
        self.store_inner::<T>(header, val, optional_mask, None)
    }

    /// This function provides a default implementation for the `store_metadata_atomic` method from the `ObjectModel` trait.
    ///
    /// Note: this function does compare-and-swap in a busy loop. So, unlike `compare_exchange_metadata`, this operation will always success.
    pub fn store_atomic<T: MetadataValue>(
        &self,
        header: Address,
        val: T,
        optional_mask: Option<T>,
        ordering: Ordering,
    ) {
        self.store_inner::<T>(header, val, optional_mask, Some(ordering))
    }

    fn store_inner<T: MetadataValue>(
        &self,
        header: Address,
        val: T,
        optional_mask: Option<T>,
        atomic_ordering: Option<Ordering>,
    ) {
        #[cfg(debug_assertions)]
        {
            self.assert_mask::<T>(optional_mask);
            self.assert_spec::<T>();
        }

        // metadata smaller than 8-bits is special in that more than one metadata value may be included in one AtomicU8 operation, and extra shift and mask, and compare_exchange is required
        if self.num_of_bits < 8 {
            let val_u8 = val.to_u8().unwrap();
            let byte_addr = self.meta_addr(header);
            if let Some(order) = atomic_ordering {
                let _ = unsafe {
                    <u8 as MetadataValue>::fetch_update(byte_addr, order, order, |old_val: u8| {
                        Some(self.set_bits_to_u8(old_val, val_u8))
                    })
                };
            } else {
                unsafe {
                    let old_byte_val = byte_addr.load::<u8>();
                    let new_byte_val = self.set_bits_to_u8(old_byte_val, val_u8);
                    byte_addr.store::<u8>(new_byte_val);
                }
            }
        } else {
            let addr = self.meta_addr(header);
            unsafe {
                if let Some(order) = atomic_ordering {
                    // if the optional mask is provided (e.g. for forwarding pointer), we need to use compare_exchange
                    if let Some(mask) = optional_mask {
                        let _ = T::fetch_update(addr, order, order, |old_val: T| {
                            Some(old_val.bitand(mask.inv()).bitor(val.bitand(mask)))
                        });
                    } else {
                        T::store_atomic(addr, val, order);
                    }
                } else {
                    let val = if let Some(mask) = optional_mask {
                        let old_val = T::load(addr);
                        old_val.bitand(mask.inv()).bitor(val.bitand(mask))
                    } else {
                        val
                    };
                    T::store(addr, val);
                }
            }
        }
    }

    /// This function provides a default implementation for the `compare_exchange_metadata` method from the `ObjectModel` trait.
    ///
    /// Note: this function only does fetch and exclusive store once, without any busy waiting in a loop.
    pub fn compare_exchange<T: MetadataValue>(
        &self,
        header: Address,
        old_metadata: T,
        new_metadata: T,
        optional_mask: Option<T>,
        success_order: Ordering,
        failure_order: Ordering,
    ) -> Result<T, T> {
        #[cfg(debug_assertions)]
        self.assert_spec::<T>();
        // metadata smaller than 8-bits is special in that more than one metadata value may be included in one AtomicU8 operation, and extra shift and mask is required
        if self.num_of_bits < 8 {
            let byte_addr = self.meta_addr(header);
            unsafe {
                let real_old_byte = byte_addr.atomic_load::<AtomicU8>(success_order);
                let expected_old_byte =
                    self.set_bits_to_u8(real_old_byte, old_metadata.to_u8().unwrap());
                let expected_new_byte =
                    self.set_bits_to_u8(expected_old_byte, new_metadata.to_u8().unwrap());
                byte_addr
                    .compare_exchange::<AtomicU8>(
                        expected_old_byte,
                        expected_new_byte,
                        success_order,
                        failure_order,
                    )
                    .map(|x| FromPrimitive::from_u8(x).unwrap())
                    .map_err(|x| FromPrimitive::from_u8(x).unwrap())
            }
        } else {
            let addr = self.meta_addr(header);
            let (old_metadata, new_metadata) = if let Some(mask) = optional_mask {
                let old_byte = unsafe { T::load_atomic(addr, success_order) };
                let expected_new_byte = old_byte.bitand(mask.inv()).bitor(new_metadata);
                let expected_old_byte = old_byte.bitand(mask.inv()).bitor(old_metadata);
                (expected_old_byte, expected_new_byte)
            } else {
                (old_metadata, new_metadata)
            };

            unsafe {
                T::compare_exchange(
                    addr,
                    old_metadata,
                    new_metadata,
                    success_order,
                    failure_order,
                )
            }
        }
    }

    /// Inner method for fetch_add/sub on bits.
    /// For fetch_and/or, we don't necessarily need this method. We could directly do fetch_and/or on the u8.
    fn fetch_ops_on_bits<F: Fn(u8) -> u8>(
        &self,
        header: Address,
        set_order: Ordering,
        fetch_order: Ordering,
        update: F,
    ) -> u8 {
        let byte_addr = self.meta_addr(header);
        let old_raw_byte = unsafe {
            <u8 as MetadataValue>::fetch_update(
                byte_addr,
                set_order,
                fetch_order,
                |raw_byte: u8| {
                    let old_metadata = self.get_bits_from_u8(raw_byte);
                    let new_metadata = self.truncate_bits_in_u8(update(old_metadata));
                    let new_byte = self.set_bits_to_u8(raw_byte, new_metadata);
                    Some(new_byte)
                },
            )
        }
        .unwrap();
        self.get_bits_from_u8(old_raw_byte)
    }

    /// This function provides a default implementation for the `fetch_add` method from the `ObjectModel` trait.
    pub fn fetch_add<T: MetadataValue>(&self, header: Address, val: T, order: Ordering) -> T {
        #[cfg(debug_assertions)]
        self.assert_spec::<T>();
        if self.num_of_bits < 8 {
            FromPrimitive::from_u8(self.fetch_ops_on_bits(header, order, order, |x: u8| {
                x.wrapping_add(val.to_u8().unwrap())
            }))
            .unwrap()
        } else {
            unsafe { T::fetch_add(self.meta_addr(header), val, order) }
        }
    }

    /// This function provides a default implementation for the `fetch_sub` method from the `ObjectModel` trait.
    pub fn fetch_sub<T: MetadataValue>(&self, header: Address, val: T, order: Ordering) -> T {
        #[cfg(debug_assertions)]
        self.assert_spec::<T>();
        if self.num_of_bits < 8 {
            FromPrimitive::from_u8(self.fetch_ops_on_bits(header, order, order, |x: u8| {
                x.wrapping_sub(val.to_u8().unwrap())
            }))
            .unwrap()
        } else {
            unsafe { T::fetch_sub(self.meta_addr(header), val, order) }
        }
    }

    /// This function provides a default implementation for the `fetch_and` method from the `ObjectModel` trait.
    pub fn fetch_and<T: MetadataValue>(&self, header: Address, val: T, order: Ordering) -> T {
        #[cfg(debug_assertions)]
        self.assert_spec::<T>();
        if self.num_of_bits < 8 {
            let (lshift, mask) = self.get_shift_and_mask_for_bits();
            let new_val = (val.to_u8().unwrap() << lshift) | !mask;
            // We do not need to use fetch_ops_on_bits(), we can just set irrelavent bits to 1, and do fetch_and
            let old_raw_byte =
                unsafe { <u8 as MetadataValue>::fetch_and(self.meta_addr(header), new_val, order) };
            let old_val = self.get_bits_from_u8(old_raw_byte);
            FromPrimitive::from_u8(old_val).unwrap()
        } else {
            unsafe { T::fetch_and(self.meta_addr(header), val, order) }
        }
    }

    /// This function provides a default implementation for the `fetch_or` method from the `ObjectModel` trait.
    pub fn fetch_or<T: MetadataValue>(&self, header: Address, val: T, order: Ordering) -> T {
        #[cfg(debug_assertions)]
        self.assert_spec::<T>();
        if self.num_of_bits < 8 {
            let (lshift, mask) = self.get_shift_and_mask_for_bits();
            let new_val = (val.to_u8().unwrap() << lshift) & mask;
            // We do not need to use fetch_ops_on_bits(), we can just set irrelavent bits to 0, and do fetch_or
            let old_raw_byte =
                unsafe { <u8 as MetadataValue>::fetch_or(self.meta_addr(header), new_val, order) };
            let old_val = self.get_bits_from_u8(old_raw_byte);
            FromPrimitive::from_u8(old_val).unwrap()
        } else {
            unsafe { T::fetch_or(self.meta_addr(header), val, order) }
        }
    }

    /// This function provides a default implementation for the `fetch_update` method from the `ObjectModel` trait.
    /// The semantics is the same as Rust's `fetch_update` on atomic types.
    pub fn fetch_update<T: MetadataValue, F: FnMut(T) -> Option<T> + Copy>(
        &self,
        header: Address,
        set_order: Ordering,
        fetch_order: Ordering,
        mut f: F,
    ) -> std::result::Result<T, T> {
        #[cfg(debug_assertions)]
        self.assert_spec::<T>();
        if self.num_of_bits < 8 {
            let byte_addr = self.meta_addr(header);
            unsafe {
                <u8 as MetadataValue>::fetch_update(
                    byte_addr,
                    set_order,
                    fetch_order,
                    |raw_byte: u8| {
                        let old_metadata = self.get_bits_from_u8(raw_byte);
                        f(FromPrimitive::from_u8(old_metadata).unwrap()).map(|new_val| {
                            let new_metadata = self.truncate_bits_in_u8(new_val.to_u8().unwrap());
                            self.set_bits_to_u8(raw_byte, new_metadata)
                        })
                    },
                )
            }
            .map(|raw_byte| FromPrimitive::from_u8(self.get_bits_from_u8(raw_byte)).unwrap())
            .map_err(|raw_byte| FromPrimitive::from_u8(self.get_bits_from_u8(raw_byte)).unwrap())
        } else {
            unsafe { T::fetch_update(self.meta_addr(header), set_order, fetch_order, f) }
        }
    }
}

impl fmt::Debug for HeaderMetadataSpec {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_fmt(format_args!(
            "HeaderMetadataSpec {{ \
            **bit_offset: 0x{:x} \
            **num_of_bits: 0x{:x} \
            }}",
            self.bit_offset, self.num_of_bits
        ))
    }
}

#[cfg(all(test, debug_assertions))]
mod tests {
    use super::*;
    use crate::util::address::Address;

    #[test]
    fn test_valid_specs() {
        let spec = HeaderMetadataSpec {
            bit_offset: 0,
            num_of_bits: 1,
        };
        spec.assert_spec::<u8>();

        let spec = HeaderMetadataSpec {
            bit_offset: 99,
            num_of_bits: 1,
        };
        spec.assert_spec::<u8>();

        let spec = HeaderMetadataSpec {
            bit_offset: 0,
            num_of_bits: 8,
        };
        spec.assert_spec::<u8>();

        let spec = HeaderMetadataSpec {
            bit_offset: 8,
            num_of_bits: 8,
        };
        spec.assert_spec::<u8>();

        let spec = HeaderMetadataSpec {
            bit_offset: 32,
            num_of_bits: 8,
        };
        spec.assert_spec::<u8>();
    }

    #[test]
    #[should_panic]
    fn test_spec_at_unaligned_offset() {
        let spec = HeaderMetadataSpec {
            bit_offset: 8,
            num_of_bits: 16,
        };
        spec.assert_spec::<u16>();
    }

    #[test]
    #[should_panic]
    fn test_bits_spec_across_byte() {
        // bits across byte boundary
        let spec = HeaderMetadataSpec {
            bit_offset: 7,
            num_of_bits: 2,
        };
        spec.assert_spec::<u8>();
    }

    #[test]
    fn test_negative_bit_offset() {
        let spec = HeaderMetadataSpec {
            bit_offset: -1,
            num_of_bits: 1,
        };
        spec.assert_spec::<u8>();
        assert_eq!(spec.get_shift_and_mask_for_bits(), (7, 0b1000_0000));
        assert_eq!(spec.byte_offset(), -1);
        assert_eq!(spec.get_bits_from_u8(0b1000_0000), 1);
        assert_eq!(spec.get_bits_from_u8(0b0111_1111), 0);

        let spec = HeaderMetadataSpec {
            bit_offset: -2,
            num_of_bits: 1,
        };
        spec.assert_spec::<u8>();
        assert_eq!(spec.get_shift_and_mask_for_bits(), (6, 0b0100_0000));
        assert_eq!(spec.byte_offset(), -1);
        assert_eq!(spec.get_bits_from_u8(0b0100_0000), 1);
        assert_eq!(spec.get_bits_from_u8(0b1011_1111), 0);

        let spec = HeaderMetadataSpec {
            bit_offset: -7,
            num_of_bits: 1,
        };
        spec.assert_spec::<u8>();
        assert_eq!(spec.get_shift_and_mask_for_bits(), (1, 0b0000_0010));
        assert_eq!(spec.byte_offset(), -1);
        assert_eq!(spec.get_bits_from_u8(0b0000_0010), 1);
        assert_eq!(spec.get_bits_from_u8(0b1111_1101), 0);

        let spec = HeaderMetadataSpec {
            bit_offset: -8,
            num_of_bits: 1,
        };
        spec.assert_spec::<u8>();
        assert_eq!(spec.get_shift_and_mask_for_bits(), (0, 0b0000_0001));
        assert_eq!(spec.byte_offset(), -1);
        assert_eq!(spec.get_bits_from_u8(0b0000_0001), 1);
        assert_eq!(spec.get_bits_from_u8(0b1111_1110), 0);

        let spec = HeaderMetadataSpec {
            bit_offset: -9,
            num_of_bits: 1,
        };
        spec.assert_spec::<u8>();
        assert_eq!(spec.get_shift_and_mask_for_bits(), (7, 0b1000_0000));
        assert_eq!(spec.byte_offset(), -2);
        assert_eq!(spec.get_bits_from_u8(0b1000_0000), 1);
        assert_eq!(spec.get_bits_from_u8(0b0111_1111), 0);
    }

    #[test]
    fn test_get_bits_from_u8() {
        // 1 bit
        let spec = HeaderMetadataSpec {
            bit_offset: 0,
            num_of_bits: 1,
        };
        assert_eq!(spec.get_shift_and_mask_for_bits(), (0, 0b1));
        assert_eq!(spec.byte_offset(), 0);
        assert_eq!(spec.get_bits_from_u8(0b0000_0001), 1);
        assert_eq!(spec.get_bits_from_u8(0b1111_1110), 0);

        let spec = HeaderMetadataSpec {
            bit_offset: 1,
            num_of_bits: 1,
        };
        assert_eq!(spec.get_shift_and_mask_for_bits(), (1, 0b10));
        assert_eq!(spec.get_bits_from_u8(0b0000_0010), 1);
        assert_eq!(spec.get_bits_from_u8(0b1111_1101), 0);

        let spec = HeaderMetadataSpec {
            bit_offset: 7,
            num_of_bits: 1,
        };
        assert_eq!(spec.get_shift_and_mask_for_bits(), (7, 0b1000_0000));
        assert_eq!(spec.get_bits_from_u8(0b1000_0000), 1);
        assert_eq!(spec.get_bits_from_u8(0b0111_1111), 0);

        // 1 bit in the next byte
        let spec = HeaderMetadataSpec {
            bit_offset: 8,
            num_of_bits: 1,
        };
        assert_eq!(spec.get_shift_and_mask_for_bits(), (0, 0b1));
        assert_eq!(spec.get_bits_from_u8(0b0000_0001), 1);
        assert_eq!(spec.get_bits_from_u8(0b1111_1110), 0);

        // 2 bits
        let spec = HeaderMetadataSpec {
            bit_offset: 0,
            num_of_bits: 2,
        };
        assert_eq!(spec.get_shift_and_mask_for_bits(), (0, 0b11));
        assert_eq!(spec.get_bits_from_u8(0b0000_0011), 0b11);
        assert_eq!(spec.get_bits_from_u8(0b0000_0010), 0b10);
        assert_eq!(spec.get_bits_from_u8(0b1111_1110), 0b10);

        let spec = HeaderMetadataSpec {
            bit_offset: 6,
            num_of_bits: 2,
        };
        assert_eq!(spec.get_shift_and_mask_for_bits(), (6, 0b1100_0000));
        assert_eq!(spec.get_bits_from_u8(0b1100_0000), 0b11);
        assert_eq!(spec.get_bits_from_u8(0b1000_0000), 0b10);
        assert_eq!(spec.get_bits_from_u8(0b1011_1111), 0b10);

        // 2 bits in the next byte
        let spec = HeaderMetadataSpec {
            bit_offset: 8,
            num_of_bits: 2,
        };
        assert_eq!(spec.get_shift_and_mask_for_bits(), (0, 0b0000_0011));
        assert_eq!(spec.get_bits_from_u8(0b0000_0011), 0b11);
        assert_eq!(spec.get_bits_from_u8(0b0000_0010), 0b10);
        assert_eq!(spec.get_bits_from_u8(0b1111_1110), 0b10);
    }

    #[test]
    fn test_set_bits_to_u8() {
        // 1 bit
        let spec = HeaderMetadataSpec {
            bit_offset: 0,
            num_of_bits: 1,
        };
        assert_eq!(spec.set_bits_to_u8(0b0000_0000, 1), 0b0000_0001);
        assert_eq!(spec.set_bits_to_u8(0b1111_1111, 1), 0b1111_1111);
        assert_eq!(spec.set_bits_to_u8(0b1111_1111, 0), 0b1111_1110);

        let spec = HeaderMetadataSpec {
            bit_offset: 1,
            num_of_bits: 1,
        };
        assert_eq!(spec.set_bits_to_u8(0b0000_0000, 1), 0b0000_0010);
        assert_eq!(spec.set_bits_to_u8(0b1111_1111, 1), 0b1111_1111);
        assert_eq!(spec.set_bits_to_u8(0b1111_1111, 0), 0b1111_1101);

        // 2 bit
        let spec = HeaderMetadataSpec {
            bit_offset: 0,
            num_of_bits: 2,
        };
        assert_eq!(spec.set_bits_to_u8(0b0000_0000, 0b11), 0b0000_0011);
        assert_eq!(spec.set_bits_to_u8(0b1111_1111, 0b11), 0b1111_1111);
        assert_eq!(spec.set_bits_to_u8(0b1111_1111, 0b10), 0b1111_1110);
        assert_eq!(spec.set_bits_to_u8(0b1111_1111, 0b01), 0b1111_1101);
        assert_eq!(spec.set_bits_to_u8(0b1111_1111, 0b00), 0b1111_1100);
    }

    #[test]
    #[should_panic]
    fn test_set_bits_to_u8_exceeds_bits() {
        let spec = HeaderMetadataSpec {
            bit_offset: 0,
            num_of_bits: 1,
        };
        spec.set_bits_to_u8(0, 0b11);
    }

    use paste::paste;

    macro_rules! impl_with_object {
        ($type: ty) => {
            paste!{
                fn [<with_ $type _obj>]<F>(f: F) where F: FnOnce(Address, *mut $type) + std::panic::UnwindSafe {
                    // Allocate a tuple that can hold 3 integers
                    let ty_size = ($type::BITS >> LOG_BITS_IN_BYTE) as usize;
                    let layout = std::alloc::Layout::from_size_align(ty_size * 3, ty_size).unwrap();
                    let (obj, ptr) = {
                        let ptr_raw: *mut $type = unsafe { std::alloc::alloc_zeroed(layout) as *mut $type };
                        // Use the mid one for testing, as we can use offset to access the other integers.
                        let ptr_mid: *mut $type = unsafe { ptr_raw.offset(1) };
                        // Make sure they are all empty
                        assert_eq!(unsafe { *(ptr_mid.offset(-1)) }, 0, "memory at offset -1 is not zero");
                        assert_eq!(unsafe { *ptr_mid }, 0, "memory at offset 0 is not zero");
                        assert_eq!(unsafe { *(ptr_mid.offset(1)) }, 0, "memory at offset 1 is not zero");
                        (Address::from_ptr(ptr_mid), ptr_mid)
                    };
                    crate::util::test_util::with_cleanup(
                        || f(obj, ptr),
                        || {
                            unsafe { std::alloc::dealloc(ptr.offset(-1) as *mut u8, layout); }
                        }
                    )
                }
            }
        }
    }

    impl_with_object!(u8);
    impl_with_object!(u16);
    impl_with_object!(u32);
    impl_with_object!(u64);
    impl_with_object!(usize);

    fn max_value(n_bits: usize) -> u64 {
        (0..n_bits).fold(0, |accum, x| accum + (1 << x))
    }

    macro_rules! test_header_metadata_access {
        ($tname: ident, $type: ty, $num_of_bits: expr) => {
            paste!{
                #[test]
                fn [<$tname _load>]() {
                    [<with_ $type _obj>](|obj, ptr| {
                        let spec = HeaderMetadataSpec { bit_offset: 0, num_of_bits: $num_of_bits };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 0);
                        let max_value = max_value($num_of_bits) as $type;
                        unsafe { *ptr = max_value };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, max_value);
                    });
                }

                #[test]
                fn [<$tname _load_atomic>]() {
                    [<with_ $type _obj>](|obj, ptr| {
                        let spec = HeaderMetadataSpec { bit_offset: 0, num_of_bits: $num_of_bits };
                        assert_eq!(spec.load_atomic::<$type>(obj, None, Ordering::SeqCst), 0);
                        let max_value = max_value($num_of_bits) as $type;
                        unsafe { *ptr = max_value };
                        assert_eq!(spec.load_atomic::<$type>(obj, None, Ordering::SeqCst), max_value);
                    });
                }

                #[test]
                fn [<$tname _load_next>]() {
                    [<with_ $type _obj>](|obj, ptr| {
                        let spec = HeaderMetadataSpec { bit_offset: $num_of_bits, num_of_bits: $num_of_bits };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 0);
                        let max_value = max_value($num_of_bits) as $type;
                        if $num_of_bits < 8 {
                            unsafe { *ptr = max_value << spec.bit_offset}
                        } else {
                            unsafe { *(ptr.offset(1)) = max_value };
                        }
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, max_value);
                    });
                }

                #[test]
                fn [<$tname _load_prev>]() {
                    [<with_ $type _obj>](|obj, ptr| {
                        let spec = HeaderMetadataSpec { bit_offset: -$num_of_bits, num_of_bits: $num_of_bits };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 0);
                        let max_value = max_value($num_of_bits) as $type;
                        if $num_of_bits < 8 {
                            unsafe { *(ptr.offset(-1)) = max_value << (BITS_IN_BYTE as isize + spec.bit_offset)}
                        } else {
                            unsafe { *(ptr.offset(-1)) = max_value };
                        }
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, max_value);
                    });
                }

                #[test]
                fn [<$tname _load_mask>]() {
                    [<with_ $type _obj>](|obj, ptr| {
                        // The test only runs for metadata no smaller than 1 byte
                        if $num_of_bits < 8 {
                            return;
                        }

                        let spec = HeaderMetadataSpec { bit_offset: 0, num_of_bits: $num_of_bits };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 0);
                        let max_value = max_value($num_of_bits) as $type;
                        unsafe { *ptr = max_value };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, max_value);
                        assert_eq!(unsafe { spec.load::<$type>(obj, Some(0)) }, 0);
                        assert_eq!(unsafe { spec.load::<$type>(obj, Some(0b101)) }, 0b101);
                    });
                }

                #[test]
                fn [<$tname _store>]() {
                    [<with_ $type _obj>](|obj, ptr| {
                        let spec = HeaderMetadataSpec { bit_offset: 0, num_of_bits: $num_of_bits };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 0);
                        let max_value = max_value($num_of_bits) as $type;
                        unsafe { spec.store::<$type>(obj, max_value, None) };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, max_value);
                        assert_eq!(unsafe { *ptr }, max_value);
                    });
                }

                #[test]
                fn [<$tname _store_atomic>]() {
                    [<with_ $type _obj>](|obj, ptr| {
                        let spec = HeaderMetadataSpec { bit_offset: 0, num_of_bits: $num_of_bits };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 0);
                        let max_value = max_value($num_of_bits) as $type;
                        spec.store_atomic::<$type>(obj, max_value, None, Ordering::SeqCst);
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, max_value);
                        assert_eq!(unsafe { *ptr }, max_value);
                    });
                }

                #[test]
                fn [<$tname _store_next>]() {
                    [<with_ $type _obj>](|obj, ptr| {
                        let spec = HeaderMetadataSpec { bit_offset: $num_of_bits, num_of_bits: $num_of_bits };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 0);
                        let max_value = max_value($num_of_bits) as $type;
                        unsafe { spec.store::<$type>(obj, max_value, None) };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, max_value);
                        if $num_of_bits < 8 {
                            assert_eq!(unsafe { *ptr }, max_value << spec.bit_offset);
                        } else {
                            assert_eq!(unsafe { *(ptr.offset(1)) }, max_value);
                        }
                    });
                }

                #[test]
                fn [<$tname _store_prev>]() {
                    [<with_ $type _obj>](|obj, ptr| {
                        let spec = HeaderMetadataSpec { bit_offset: -$num_of_bits, num_of_bits: $num_of_bits };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 0);
                        let max_value = max_value($num_of_bits) as $type;
                        unsafe { spec.store::<$type>(obj, max_value, None) };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, max_value);
                        if $num_of_bits < 8 {
                            assert_eq!(unsafe { *ptr.offset(-1) }, max_value << (BITS_IN_BYTE as isize + spec.bit_offset));
                        } else {
                            assert_eq!(unsafe { *(ptr.offset(-1)) }, max_value);
                        }
                    });
                }

                #[test]
                fn [<$tname _store_mask>]() {
                    [<with_ $type _obj>](|obj, ptr| {
                        // The test only runs for metadata no smaller than 1 byte
                        if $num_of_bits < 8 {
                            return;
                        }

                        let spec = HeaderMetadataSpec { bit_offset: 0, num_of_bits: $num_of_bits };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 0);
                        let max_value = max_value($num_of_bits) as $type;

                        // set to max with mask of all 1s
                        unsafe { spec.store::<$type>(obj, max_value, Some(max_value)) };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, max_value);

                        // set to 0
                        unsafe { spec.store::<$type>(obj, 0, None) };

                        // set to max with mask of 1 bit
                        unsafe { spec.store::<$type>(obj, max_value, Some(0b10)) };
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 0b10);
                        assert_eq!(unsafe { *ptr }, 0b10);
                    });
                }

                #[test]
                fn [<$tname _compare_exchange_success>]() {
                    [<with_ $type _obj>](|obj, _| {
                        let spec = HeaderMetadataSpec { bit_offset: 0, num_of_bits: $num_of_bits };
                        let old_val = unsafe { spec.load::<$type>(obj, None) };
                        assert_eq!(old_val, 0);

                        let max_value = max_value($num_of_bits) as $type;
                        let res = spec.compare_exchange::<$type>(obj, old_val, max_value, None, Ordering::SeqCst, Ordering::SeqCst);
                        assert!(res.is_ok());
                        assert_eq!(res.unwrap(), old_val);
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, max_value);
                    })
                }

                #[test]
                fn [<$tname _compare_exchange_fail>]() {
                    [<with_ $type _obj>](|obj, _| {
                        let spec = HeaderMetadataSpec { bit_offset: 0, num_of_bits: $num_of_bits };
                        let old_val = unsafe { spec.load::<$type>(obj, None) };
                        assert_eq!(old_val, 0);

                        // Change the value
                        unsafe { spec.store::<$type>(obj, 1, None) };

                        let max_value = max_value($num_of_bits) as $type;
                        let res = spec.compare_exchange::<$type>(obj, old_val, max_value, None, Ordering::SeqCst, Ordering::SeqCst);
                        assert!(res.is_err());
                        assert_eq!(res.err().unwrap(), 1);
                        assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 1);
                    })
                }

                #[test]
                fn [<$tname _fetch_add>]() {
                    [<with_ $type _obj>](|obj, _| {
                        for bit_offset in (0isize..($type::BITS as isize)).step_by($num_of_bits) {
                            let spec = HeaderMetadataSpec { bit_offset, num_of_bits: $num_of_bits };
                            let max_value = max_value($num_of_bits) as $type;

                            let old_val = unsafe { spec.load::<$type>(obj, None) };
                            assert_eq!(old_val, 0);

                            let old_val_from_fetch = spec.fetch_add::<$type>(obj, max_value, Ordering::SeqCst);
                            assert_eq!(old_val, old_val_from_fetch);
                            assert_eq!(unsafe { spec.load::<$type>(obj, None) }, max_value);
                        }
                    })
                }

                #[test]
                fn [<$tname _fetch_add_overflow>]() {
                    [<with_ $type _obj>](|obj, ptr| {
                        for bit_offset in (0isize..($type::BITS as isize)).step_by($num_of_bits) {
                            let spec = HeaderMetadataSpec { bit_offset, num_of_bits: $num_of_bits };
                            let max_value = max_value($num_of_bits) as $type;

                            unsafe { spec.store::<$type>(obj, max_value, None) };
                            let old_val = unsafe { spec.load::<$type>(obj, None) };

                            // add 1 will cause overflow
                            let old_val_from_fetch = spec.fetch_add::<$type>(obj, 1, Ordering::SeqCst);
                            assert_eq!(old_val, old_val_from_fetch);
                            assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 0);
                            assert_eq!(unsafe { *ptr }, 0); // we should not accidentally affect other bits
                        }
                    })
                }

                #[test]
                fn [<$tname _fetch_sub>]() {
                    [<with_ $type _obj>](|obj, _| {
                        for bit_offset in (0isize..($type::BITS as isize)).step_by($num_of_bits) {
                            let spec = HeaderMetadataSpec { bit_offset, num_of_bits: $num_of_bits };

                            unsafe { spec.store::<$type>(obj, 1, None) };
                            let old_val = unsafe { spec.load::<$type>(obj, None) };
                            assert_eq!(old_val, 1);

                            let old_val_from_fetch = spec.fetch_sub::<$type>(obj, 1, Ordering::SeqCst);
                            assert_eq!(old_val, old_val_from_fetch);
                            assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 0);
                        }
                    })
                }

                #[test]
                fn [<$tname _fetch_sub_overflow>]() {
                    [<with_ $type _obj>](|obj, _| {
                        for bit_offset in (0isize..($type::BITS as isize)).step_by($num_of_bits) {
                            let spec = HeaderMetadataSpec { bit_offset, num_of_bits: $num_of_bits };
                            let max_value = max_value($num_of_bits) as $type;

                            let old_val = unsafe { spec.load::<$type>(obj, None) };
                            assert_eq!(old_val, 0);

                            let old_val_from_fetch = spec.fetch_sub::<$type>(obj, 1, Ordering::SeqCst);
                            assert_eq!(old_val, old_val_from_fetch);
                            assert_eq!(unsafe { spec.load::<$type>(obj, None) }, max_value);
                        }
                    })
                }

                #[test]
                fn [<$tname _fetch_and>]() {
                    [<with_ $type _obj>](|obj, _| {
                        for bit_offset in (0isize..($type::BITS as isize)).step_by($num_of_bits) {
                            let spec = HeaderMetadataSpec { bit_offset, num_of_bits: $num_of_bits };
                            let max_value = max_value($num_of_bits) as $type;

                            let old_val = unsafe { spec.load::<$type>(obj, None) };
                            assert_eq!(old_val, 0);

                            let old_val_from_fetch = spec.fetch_and::<$type>(obj, max_value, Ordering::SeqCst);
                            assert_eq!(old_val, old_val_from_fetch);
                            assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 0);
                        }
                    })
                }

                #[test]
                fn [<$tname _fetch_or>]() {
                    [<with_ $type _obj>](|obj, _| {
                        for bit_offset in (0isize..($type::BITS as isize)).step_by($num_of_bits) {
                            let spec = HeaderMetadataSpec { bit_offset, num_of_bits: $num_of_bits };
                            let max_value = max_value($num_of_bits) as $type;

                            let old_val = unsafe { spec.load::<$type>(obj, None) };
                            assert_eq!(old_val, 0);

                            let old_val_from_fetch = spec.fetch_or::<$type>(obj, max_value, Ordering::SeqCst);
                            assert_eq!(old_val, old_val_from_fetch);
                            assert_eq!(unsafe { spec.load::<$type>(obj, None) }, max_value);
                        }
                    })
                }

                #[test]
                fn [<$tname _fetch_update_success>]() {
                    [<with_ $type _obj>](|obj, _| {
                        for bit_offset in (0isize..($type::BITS as isize)).step_by($num_of_bits) {
                            let spec = HeaderMetadataSpec { bit_offset, num_of_bits: $num_of_bits };
                            let max_value = max_value($num_of_bits) as $type;

                            let old_val = unsafe { spec.load::<$type>(obj, None) };
                            assert_eq!(old_val, 0);

                            let update_res = spec.fetch_update(obj, Ordering::SeqCst, Ordering::SeqCst, |_x: $type| Some(max_value));
                            assert!(update_res.is_ok());
                            assert_eq!(old_val, update_res.unwrap());
                            assert_eq!(unsafe { spec.load::<$type>(obj, None) }, max_value);
                        }
                    })
                }

                #[test]
                fn [<$tname _fetch_update_fail>]() {
                    [<with_ $type _obj>](|obj, _| {
                        for bit_offset in (0isize..($type::BITS as isize)).step_by($num_of_bits) {
                            let spec = HeaderMetadataSpec { bit_offset, num_of_bits: $num_of_bits };

                            let old_val = unsafe { spec.load::<$type>(obj, None) };
                            assert_eq!(old_val, 0);

                            let update_res = spec.fetch_update(obj, Ordering::SeqCst, Ordering::SeqCst, |_x: $type| None);
                            assert!(update_res.is_err());
                            assert_eq!(old_val, update_res.err().unwrap());
                            assert_eq!(unsafe { spec.load::<$type>(obj, None) }, 0);
                        }
                    })
                }
            }
        }
    }

    test_header_metadata_access!(test_u1, u8, 1);
    test_header_metadata_access!(test_u2, u8, 2);
    test_header_metadata_access!(test_u4, u8, 4);
    test_header_metadata_access!(test_u8, u8, 8);
    test_header_metadata_access!(test_u16, u16, 16);
    test_header_metadata_access!(test_u32, u32, 32);
    test_header_metadata_access!(test_u64, u64, 64);
    test_header_metadata_access!(
        test_usize,
        usize,
        if cfg!(target_pointer_width = "64") {
            64
        } else if cfg!(target_pointer_width = "32") {
            32
        } else {
            unreachable!()
        }
    );
}