mmtk/util/reference_processor.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
use std::collections::HashSet;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering;
use std::sync::Mutex;
use std::vec::Vec;
use crate::plan::is_nursery_gc;
use crate::scheduler::ProcessEdgesWork;
use crate::scheduler::WorkBucketStage;
use crate::util::ObjectReference;
use crate::util::VMWorkerThread;
use crate::vm::ReferenceGlue;
use crate::vm::VMBinding;
/// Holds all reference processors for each weak reference Semantics.
/// Currently this is based on Java's weak reference semantics (soft/weak/phantom).
/// We should make changes to make this general rather than Java specific.
pub struct ReferenceProcessors {
soft: ReferenceProcessor,
weak: ReferenceProcessor,
phantom: ReferenceProcessor,
}
impl ReferenceProcessors {
pub fn new() -> Self {
ReferenceProcessors {
soft: ReferenceProcessor::new(Semantics::SOFT),
weak: ReferenceProcessor::new(Semantics::WEAK),
phantom: ReferenceProcessor::new(Semantics::PHANTOM),
}
}
pub fn get(&self, semantics: Semantics) -> &ReferenceProcessor {
match semantics {
Semantics::SOFT => &self.soft,
Semantics::WEAK => &self.weak,
Semantics::PHANTOM => &self.phantom,
}
}
pub fn add_soft_candidate(&self, reff: ObjectReference) {
trace!("Add soft candidate: {}", reff);
self.soft.add_candidate(reff);
}
pub fn add_weak_candidate(&self, reff: ObjectReference) {
trace!("Add weak candidate: {}", reff);
self.weak.add_candidate(reff);
}
pub fn add_phantom_candidate(&self, reff: ObjectReference) {
trace!("Add phantom candidate: {}", reff);
self.phantom.add_candidate(reff);
}
/// This will invoke enqueue for each reference processor, which will
/// call back to the VM to enqueue references whose referents are cleared
/// in this GC.
pub fn enqueue_refs<VM: VMBinding>(&self, tls: VMWorkerThread) {
self.soft.enqueue::<VM>(tls);
self.weak.enqueue::<VM>(tls);
self.phantom.enqueue::<VM>(tls);
}
/// A separate reference forwarding step. Normally when we scan refs, we deal with forwarding.
/// However, for some plans like mark compact, at the point we do ref scanning, we do not know
/// the forwarding addresses yet, thus we cannot do forwarding during scan refs. And for those
/// plans, this separate step is required.
pub fn forward_refs<E: ProcessEdgesWork>(&self, trace: &mut E, mmtk: &'static MMTK<E::VM>) {
debug_assert!(
mmtk.get_plan().constraints().needs_forward_after_liveness,
"A plan with needs_forward_after_liveness=false does not need a separate forward step"
);
self.soft
.forward::<E>(trace, is_nursery_gc(mmtk.get_plan()));
self.weak
.forward::<E>(trace, is_nursery_gc(mmtk.get_plan()));
self.phantom
.forward::<E>(trace, is_nursery_gc(mmtk.get_plan()));
}
// Methods for scanning weak references. It needs to be called in a decreasing order of reference strengths, i.e. soft > weak > phantom
pub fn retain_soft_refs<E: ProcessEdgesWork>(&self, trace: &mut E, mmtk: &'static MMTK<E::VM>) {
self.soft.retain::<E>(trace, is_nursery_gc(mmtk.get_plan()));
}
/// Scan soft references.
pub fn scan_soft_refs<VM: VMBinding>(&self, mmtk: &'static MMTK<VM>) {
// This will update the references (and the referents).
self.soft.scan::<VM>(is_nursery_gc(mmtk.get_plan()));
}
/// Scan weak references.
pub fn scan_weak_refs<VM: VMBinding>(&self, mmtk: &'static MMTK<VM>) {
self.weak.scan::<VM>(is_nursery_gc(mmtk.get_plan()));
}
/// Scan phantom references.
pub fn scan_phantom_refs<VM: VMBinding>(&self, mmtk: &'static MMTK<VM>) {
self.phantom.scan::<VM>(is_nursery_gc(mmtk.get_plan()));
}
}
impl Default for ReferenceProcessors {
fn default() -> Self {
Self::new()
}
}
// XXX: We differ from the original implementation
// by ignoring "stress," i.e. where the array
// of references is grown by 1 each time. We
// can't do this here b/c std::vec::Vec doesn't
// allow us to customize its behaviour like that.
// (Similarly, GROWTH_FACTOR is locked at 2.0, but
// luckily this is also the value used by Java MMTk.)
const INITIAL_SIZE: usize = 256;
/// We create a reference processor for each semantics. Generally we expect these
/// to happen for each processor:
/// 1. The VM adds reference candidates. They could either do it when a weak reference
/// is created, or when a weak reference is traced during GC.
/// 2. We scan references after the GC determins liveness.
/// 3. We forward references if the GC needs forwarding after liveness.
/// 4. We inform the binding of references whose referents are cleared during this GC by enqueue'ing.
pub struct ReferenceProcessor {
/// Most of the reference processor is protected by a mutex.
sync: Mutex<ReferenceProcessorSync>,
/// The semantics for the reference processor
semantics: Semantics,
/// Is it allowed to add candidate to this reference processor? The value is true for most of the time,
/// but it is set to false once we finish forwarding references, at which point we do not expect to encounter
/// any 'new' reference in the same GC. This makes sure that no new entry will be added to our reference table once
/// we finish forwarding, as we will not be able to process the entry in that GC.
// This avoids an issue in the following scenario in mark compact:
// 1. First trace: add a candidate WR
// 2. Weak reference scan: scan the reference table, as MC does not forward object in the first trace. This scan does not update any reference.
// 3. Second trace: call add_candidate again with WR, but WR gets ignored as we already have WR in our reference table.
// 4. Weak reference forward: call trace_object for WR, which pushes WR to the node buffer and update WR -> WR' in our reference table.
// 5. When we trace objects in the node buffer, we will attempt to add WR as a candidate. As we have updated WR to WR' in our reference
// table, we would accept WR as a candidate. But we will not trace WR again, and WR will be invalid after this GC.
// This flag is set to false after Step 4, so in Step 5, we will ignore adding WR.
allow_new_candidate: AtomicBool,
}
#[derive(Debug, PartialEq)]
pub enum Semantics {
SOFT,
WEAK,
PHANTOM,
}
struct ReferenceProcessorSync {
/// The table of reference objects for the current semantics. We add references to this table by
/// add_candidate(). After scanning this table, a reference in the table should either
/// stay in the table (if the referent is alive) or go to enqueued_reference (if the referent is dead and cleared).
/// Note that this table should not have duplicate entries, otherwise we will scan the duplicates multiple times, and
/// that may lead to incorrect results.
references: HashSet<ObjectReference>,
/// References whose referents are cleared during this GC. We add references to this table during
/// scanning, and we pop from this table during the enqueue work at the end of GC.
enqueued_references: Vec<ObjectReference>,
/// Index into the references table for the start of nursery objects
nursery_index: usize,
}
impl ReferenceProcessor {
pub fn new(semantics: Semantics) -> Self {
ReferenceProcessor {
sync: Mutex::new(ReferenceProcessorSync {
references: HashSet::with_capacity(INITIAL_SIZE),
enqueued_references: vec![],
nursery_index: 0,
}),
semantics,
allow_new_candidate: AtomicBool::new(true),
}
}
/// Add a candidate.
pub fn add_candidate(&self, reff: ObjectReference) {
if !self.allow_new_candidate.load(Ordering::SeqCst) {
return;
}
let mut sync = self.sync.lock().unwrap();
sync.references.insert(reff);
}
fn disallow_new_candidate(&self) {
self.allow_new_candidate.store(false, Ordering::SeqCst);
}
fn allow_new_candidate(&self) {
self.allow_new_candidate.store(true, Ordering::SeqCst);
}
// These functions call `ObjectReference::get_forwarded_object`, not `trace_object()`.
// They are used by steps that do not expand the transitive closure. Processing weak and
// phantom references never expand the transitive closure. Soft references, when not retained,
// do not expand the transitive closure, either.
// These functions are intended to make the code easier to understand.
/// Return the new `ObjectReference` of a referent if it is already moved, or its current
/// `ObjectReference` otherwise. The referent must be live when calling this function.
fn get_forwarded_referent(referent: ObjectReference) -> ObjectReference {
debug_assert!(referent.is_live());
referent.get_forwarded_object().unwrap_or(referent)
}
/// Return the new `ObjectReference` of a reference object if it is already moved, or its
/// current `ObjectReference` otherwise. The reference object must be live when calling this
/// function.
fn get_forwarded_reference(object: ObjectReference) -> ObjectReference {
debug_assert!(object.is_live());
object.get_forwarded_object().unwrap_or(object)
}
// These funcions call `trace_object()`, which will ensure the object and its descendents will
// be traced. They are only called in steps that expand the transitive closure. That include
// retaining soft references, and (for MarkCompact) tracing objects for forwarding.
// Note that finalizers also expand the transitive closure.
// These functions are intended to make the code easier to understand.
/// This function is called when retaining soft reference. It
/// - keeps the referent alive, and
/// - adds the referent to the tracing queue if not yet reached, so that its children will be
/// kept alive, too, and
/// - gets the new object reference of the referent if it is moved.
fn keep_referent_alive<E: ProcessEdgesWork>(
e: &mut E,
referent: ObjectReference,
) -> ObjectReference {
e.trace_object(referent)
}
/// This function is called when forwarding the references and referents (for MarkCompact). It
/// - adds the reference or the referent to the tracing queue if not yet reached, so that
/// the children of the reference or referent will be visited and forwarded, too, and
/// - gets the forwarded object reference of the object.
fn trace_forward_object<E: ProcessEdgesWork>(
e: &mut E,
referent: ObjectReference,
) -> ObjectReference {
e.trace_object(referent)
}
/// Inform the binding to enqueue the weak references whose referents were cleared in this GC.
pub fn enqueue<VM: VMBinding>(&self, tls: VMWorkerThread) {
let mut sync = self.sync.lock().unwrap();
// This is the end of a GC. We do some assertions here to make sure our reference tables are correct.
#[cfg(debug_assertions)]
{
// For references in the table, the reference needs to be valid, and if the referent is not cleared, it should be valid as well
sync.references.iter().for_each(|reff| {
debug_assert!(reff.is_in_any_space());
if let Some(referent) = VM::VMReferenceGlue::get_referent(*reff) {
debug_assert!(
referent.is_in_any_space(),
"Referent {:?} (of reference {:?}) is not in any space",
referent,
reff
);
}
});
// For references that will be enqueue'd, the reference needs to be valid, and the referent needs to be cleared.
sync.enqueued_references.iter().for_each(|reff| {
debug_assert!(reff.is_in_any_space());
let maybe_referent = VM::VMReferenceGlue::get_referent(*reff);
debug_assert!(maybe_referent.is_none());
});
}
if !sync.enqueued_references.is_empty() {
trace!("enqueue: {:?}", sync.enqueued_references);
VM::VMReferenceGlue::enqueue_references(&sync.enqueued_references, tls);
sync.enqueued_references.clear();
}
self.allow_new_candidate();
}
/// Forward the reference tables in the reference processor. This is only needed if a plan does not forward
/// objects in their first transitive closure.
/// nursery is not used for this.
pub fn forward<E: ProcessEdgesWork>(&self, trace: &mut E, _nursery: bool) {
let mut sync = self.sync.lock().unwrap();
debug!("Starting ReferenceProcessor.forward({:?})", self.semantics);
// Forward a single reference
fn forward_reference<E: ProcessEdgesWork>(
trace: &mut E,
reference: ObjectReference,
) -> ObjectReference {
{
use crate::vm::ObjectModel;
trace!(
"Forwarding reference: {} (size: {})",
reference,
<E::VM as VMBinding>::VMObjectModel::get_current_size(reference)
);
}
if let Some(old_referent) =
<E::VM as VMBinding>::VMReferenceGlue::get_referent(reference)
{
let new_referent = ReferenceProcessor::trace_forward_object(trace, old_referent);
<E::VM as VMBinding>::VMReferenceGlue::set_referent(reference, new_referent);
trace!(
" referent: {} (forwarded to {})",
old_referent,
new_referent
);
}
let new_reference = ReferenceProcessor::trace_forward_object(trace, reference);
trace!(" reference: forwarded to {}", new_reference);
new_reference
}
sync.references = sync
.references
.iter()
.map(|reff| forward_reference::<E>(trace, *reff))
.collect();
sync.enqueued_references = sync
.enqueued_references
.iter()
.map(|reff| forward_reference::<E>(trace, *reff))
.collect();
debug!("Ending ReferenceProcessor.forward({:?})", self.semantics);
// We finish forwarding. No longer accept new candidates.
self.disallow_new_candidate();
}
/// Scan the reference table, and update each reference/referent.
/// It doesn't keep the reference or the referent alive.
// TODO: nursery is currently ignored. We used to use Vec for the reference table, and use an int
// to point to the reference that we last scanned. However, when we use HashSet for reference table,
// we can no longer do that.
fn scan<VM: VMBinding>(&self, _nursery: bool) {
let mut sync = self.sync.lock().unwrap();
debug!("Starting ReferenceProcessor.scan({:?})", self.semantics);
trace!(
"{:?} Reference table is {:?}",
self.semantics,
sync.references
);
//debug_assert!(sync.enqueued_references.is_empty());
// Put enqueued reference in this vec
let mut enqueued_references = vec![];
// Determinine liveness for each reference and only keep the refs if `process_reference()` returns Some.
let new_set: HashSet<ObjectReference> = sync
.references
.iter()
.filter_map(|reff| self.process_reference::<VM>(*reff, &mut enqueued_references))
.collect();
debug!(
"{:?} reference table from {} to {} ({} enqueued)",
self.semantics,
sync.references.len(),
new_set.len(),
enqueued_references.len()
);
sync.references = new_set;
sync.enqueued_references.extend(enqueued_references);
debug!("Ending ReferenceProcessor.scan({:?})", self.semantics);
}
/// Retain referent in the reference table. This method deals only with soft references.
/// It retains the referent if the reference is definitely reachable. This method does
/// not update reference or referent. So after this method, scan() should be used to update
/// the references/referents.
fn retain<E: ProcessEdgesWork>(&self, trace: &mut E, _nursery: bool) {
debug_assert!(self.semantics == Semantics::SOFT);
let sync = self.sync.lock().unwrap();
debug!("Starting ReferenceProcessor.retain({:?})", self.semantics);
trace!(
"{:?} Reference table is {:?}",
self.semantics,
sync.references
);
for reference in sync.references.iter() {
trace!("Processing reference: {:?}", reference);
if !reference.is_live() {
// Reference is currently unreachable but may get reachable by the
// following trace. We postpone the decision.
continue;
}
// Reference is definitely reachable. Retain the referent.
if let Some(referent) = <E::VM as VMBinding>::VMReferenceGlue::get_referent(*reference)
{
Self::keep_referent_alive(trace, referent);
trace!(" ~> {:?} (retained)", referent);
}
}
debug!("Ending ReferenceProcessor.retain({:?})", self.semantics);
}
/// Process a reference.
/// * If both the reference and the referent is alive, return the updated reference and update its referent properly.
/// * If the reference is alive, and the referent is not cleared but not alive, return None and the reference (with cleared referent) is enqueued.
/// * For other cases, return None.
///
/// If a None value is returned, the reference can be removed from the reference table. Otherwise, the updated reference should be kept
/// in the reference table.
fn process_reference<VM: VMBinding>(
&self,
reference: ObjectReference,
enqueued_references: &mut Vec<ObjectReference>,
) -> Option<ObjectReference> {
trace!("Process reference: {}", reference);
// If the reference is dead, we're done with it. Let it (and
// possibly its referent) be garbage-collected.
if !reference.is_live() {
VM::VMReferenceGlue::clear_referent(reference);
trace!(" UNREACHABLE reference: {}", reference);
return None;
}
// The reference object is live.
let new_reference = Self::get_forwarded_reference(reference);
trace!(" forwarded to: {}", new_reference);
// Get the old referent.
let maybe_old_referent = VM::VMReferenceGlue::get_referent(reference);
trace!(" referent: {:?}", maybe_old_referent);
// If the application has cleared the referent the Java spec says
// this does not cause the Reference object to be enqueued. We
// simply allow the Reference object to fall out of our
// waiting list.
let Some(old_referent) = maybe_old_referent else {
trace!(" (cleared referent) ");
return None;
};
if old_referent.is_live() {
// Referent is still reachable in a way that is as strong as
// or stronger than the current reference level.
let new_referent = Self::get_forwarded_referent(old_referent);
debug_assert!(new_referent.is_live());
trace!(" forwarded referent to: {}", new_referent);
// The reference object stays on the waiting list, and the
// referent is untouched. The only thing we must do is
// ensure that the former addresses are updated with the
// new forwarding addresses in case the collector is a
// copying collector.
// Update the referent
VM::VMReferenceGlue::set_referent(new_reference, new_referent);
Some(new_reference)
} else {
// Referent is unreachable. Clear the referent and enqueue the reference object.
trace!(" UNREACHABLE referent: {}", old_referent);
VM::VMReferenceGlue::clear_referent(new_reference);
enqueued_references.push(new_reference);
None
}
}
}
use crate::scheduler::GCWork;
use crate::scheduler::GCWorker;
use crate::MMTK;
use std::marker::PhantomData;
#[derive(Default)]
pub(crate) struct RescanReferences<VM: VMBinding> {
pub soft: bool,
pub weak: bool,
pub phantom_data: PhantomData<VM>,
}
impl<VM: VMBinding> GCWork<VM> for RescanReferences<VM> {
fn do_work(&mut self, _worker: &mut GCWorker<VM>, mmtk: &'static MMTK<VM>) {
if self.soft {
mmtk.reference_processors.scan_soft_refs(mmtk);
}
if self.weak {
mmtk.reference_processors.scan_weak_refs(mmtk);
}
}
}
#[derive(Default)]
pub(crate) struct SoftRefProcessing<E: ProcessEdgesWork>(PhantomData<E>);
impl<E: ProcessEdgesWork> GCWork<E::VM> for SoftRefProcessing<E> {
fn do_work(&mut self, worker: &mut GCWorker<E::VM>, mmtk: &'static MMTK<E::VM>) {
if !mmtk.state.is_emergency_collection() {
// Postpone the scanning to the end of the transitive closure from strongly reachable
// soft references.
let rescan = Box::new(RescanReferences {
soft: true,
weak: false,
phantom_data: PhantomData,
});
worker.scheduler().work_buckets[WorkBucketStage::SoftRefClosure].set_sentinel(rescan);
// Retain soft references. This will expand the transitive closure. We create an
// instance of `E` for this.
let mut w = E::new(vec![], false, mmtk, WorkBucketStage::SoftRefClosure);
w.set_worker(worker);
mmtk.reference_processors.retain_soft_refs(&mut w, mmtk);
w.flush();
} else {
// Scan soft references immediately without retaining.
mmtk.reference_processors.scan_soft_refs(mmtk);
}
}
}
impl<E: ProcessEdgesWork> SoftRefProcessing<E> {
pub fn new() -> Self {
Self(PhantomData)
}
}
#[derive(Default)]
pub(crate) struct WeakRefProcessing<VM: VMBinding>(PhantomData<VM>);
impl<VM: VMBinding> GCWork<VM> for WeakRefProcessing<VM> {
fn do_work(&mut self, _worker: &mut GCWorker<VM>, mmtk: &'static MMTK<VM>) {
mmtk.reference_processors.scan_weak_refs(mmtk);
}
}
impl<VM: VMBinding> WeakRefProcessing<VM> {
pub fn new() -> Self {
Self(PhantomData)
}
}
#[derive(Default)]
pub(crate) struct PhantomRefProcessing<VM: VMBinding>(PhantomData<VM>);
impl<VM: VMBinding> GCWork<VM> for PhantomRefProcessing<VM> {
fn do_work(&mut self, _worker: &mut GCWorker<VM>, mmtk: &'static MMTK<VM>) {
mmtk.reference_processors.scan_phantom_refs(mmtk);
}
}
impl<VM: VMBinding> PhantomRefProcessing<VM> {
pub fn new() -> Self {
Self(PhantomData)
}
}
#[derive(Default)]
pub(crate) struct RefForwarding<E: ProcessEdgesWork>(PhantomData<E>);
impl<E: ProcessEdgesWork> GCWork<E::VM> for RefForwarding<E> {
fn do_work(&mut self, worker: &mut GCWorker<E::VM>, mmtk: &'static MMTK<E::VM>) {
let mut w = E::new(vec![], false, mmtk, WorkBucketStage::RefForwarding);
w.set_worker(worker);
mmtk.reference_processors.forward_refs(&mut w, mmtk);
w.flush();
}
}
impl<E: ProcessEdgesWork> RefForwarding<E> {
pub fn new() -> Self {
Self(PhantomData)
}
}
#[derive(Default)]
pub(crate) struct RefEnqueue<VM: VMBinding>(PhantomData<VM>);
impl<VM: VMBinding> GCWork<VM> for RefEnqueue<VM> {
fn do_work(&mut self, worker: &mut GCWorker<VM>, mmtk: &'static MMTK<VM>) {
mmtk.reference_processors.enqueue_refs::<VM>(worker.tls);
}
}
impl<VM: VMBinding> RefEnqueue<VM> {
pub fn new() -> Self {
Self(PhantomData)
}
}