Struct mmtk::util::heap::gc_trigger::MemBalancerTrigger
source · pub struct MemBalancerTrigger {
min_heap_pages: usize,
max_heap_pages: usize,
current_heap_pages: AtomicUsize,
pending_pages: AtomicUsize,
stats: AtomicRefCell<MemBalancerStats>,
}
Expand description
An implementation of MemBalancer (Optimal heap limits for reducing browser memory use, https://dl.acm.org/doi/10.1145/3563323) We use MemBalancer to decide a heap limit between the min heap and the max heap. The current implementation is a simplified version of mem balancer and it does not take collection/allocation speed into account, and uses a fixed constant instead.
Fields§
§min_heap_pages: usize
The min heap size
max_heap_pages: usize
The max heap size
current_heap_pages: AtomicUsize
The current heap size
pending_pages: AtomicUsize
The number of pending allocation pages. The allocation requests for them have failed, and a GC is triggered. We will need to take them into consideration so that the new heap size can accomodate those allocations.
stats: AtomicRefCell<MemBalancerStats>
Statistics
Implementations§
source§impl MemBalancerTrigger
impl MemBalancerTrigger
fn new(min_heap_pages: usize, max_heap_pages: usize) -> Self
fn access_stats<F>(&self, f: F)where
F: FnMut(&mut MemBalancerStats),
fn compute_new_heap_limit( &self, live: usize, extra_reserve: usize, stats: &mut MemBalancerStats )
Trait Implementations§
source§impl<VM: VMBinding> GCTriggerPolicy<VM> for MemBalancerTrigger
impl<VM: VMBinding> GCTriggerPolicy<VM> for MemBalancerTrigger
source§fn is_gc_required(
&self,
space_full: bool,
space: Option<SpaceStats<'_, VM>>,
plan: &dyn Plan<VM = VM>
) -> bool
fn is_gc_required( &self, space_full: bool, space: Option<SpaceStats<'_, VM>>, plan: &dyn Plan<VM = VM> ) -> bool
Is a GC required now? The GC trigger may implement its own heuristics to decide when
a GC should be performed. However, we recommend the implementation to do its own checks
first, and always call
plan.collection_required(space_full, space)
at the end as a fallback to see if the plan needs
to do a GC. Read moresource§fn on_pending_allocation(&self, pages: usize)
fn on_pending_allocation(&self, pages: usize)
Inform the triggering policy that we have pending allocation.
Any GC trigger policy with dynamic heap size should take this into account when calculating a new heap size.
Failing to do so may result in unnecessay GCs, or result in an infinite loop if the new heap size
can never accomodate the pending allocation.
source§fn on_gc_start(&self, mmtk: &'static MMTK<VM>)
fn on_gc_start(&self, mmtk: &'static MMTK<VM>)
Inform the triggering policy that a GC starts.
source§fn on_gc_release(&self, mmtk: &'static MMTK<VM>)
fn on_gc_release(&self, mmtk: &'static MMTK<VM>)
Inform the triggering policy that a GC is about to start the release work. This is called
in the global Release work packet. This means we assume a plan
do not schedule any work that reclaims memory before the global
Release
work. The current plans
satisfy this assumption: they schedule other release work in plan.release()
.source§fn is_heap_full(&self, plan: &dyn Plan<VM = VM>) -> bool
fn is_heap_full(&self, plan: &dyn Plan<VM = VM>) -> bool
Is current heap full?
source§fn get_current_heap_size_in_pages(&self) -> usize
fn get_current_heap_size_in_pages(&self) -> usize
Return the current heap size (in pages)
source§fn get_max_heap_size_in_pages(&self) -> usize
fn get_max_heap_size_in_pages(&self) -> usize
Return the upper bound of heap size
source§fn can_heap_size_grow(&self) -> bool
fn can_heap_size_grow(&self) -> bool
Can the heap size grow?
Auto Trait Implementations§
impl !RefUnwindSafe for MemBalancerTrigger
impl Send for MemBalancerTrigger
impl Sync for MemBalancerTrigger
impl Unpin for MemBalancerTrigger
impl UnwindSafe for MemBalancerTrigger
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Convert
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Convert
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.§impl<T> DowncastSync for T
impl<T> DowncastSync for T
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more