1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
//! MMTk instance.
use crate::global_state::{GcStatus, GlobalState};
use crate::plan::gc_requester::GCRequester;
use crate::plan::CreateGeneralPlanArgs;
use crate::plan::Plan;
use crate::policy::sft_map::{create_sft_map, SFTMap};
use crate::scheduler::GCWorkScheduler;
#[cfg(feature = "vo_bit")]
use crate::util::address::ObjectReference;
#[cfg(feature = "analysis")]
use crate::util::analysis::AnalysisManager;
use crate::util::finalizable_processor::FinalizableProcessor;
use crate::util::heap::gc_trigger::GCTrigger;
use crate::util::heap::layout::vm_layout::VMLayout;
use crate::util::heap::layout::{self, Mmapper, VMMap};
use crate::util::heap::HeapMeta;
use crate::util::opaque_pointer::*;
use crate::util::options::Options;
use crate::util::reference_processor::ReferenceProcessors;
#[cfg(feature = "sanity")]
use crate::util::sanity::sanity_checker::SanityChecker;
#[cfg(feature = "extreme_assertions")]
use crate::util::slot_logger::SlotLogger;
use crate::util::statistics::stats::Stats;
use crate::vm::ReferenceGlue;
use crate::vm::VMBinding;
use std::cell::UnsafeCell;
use std::default::Default;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use std::sync::Mutex;
lazy_static! {
// I am not sure if we should include these mmappers as part of MMTk struct.
// The considerations are:
// 1. We need VMMap and Mmapper to create spaces. It is natural that the mappers are not
// part of MMTK, as creating MMTK requires these mappers. We could use Rc/Arc for these mappers though.
// 2. These mmappers are possibly global across multiple MMTk instances, as they manage the
// entire address space.
// TODO: We should refactor this when we know more about how multiple MMTK instances work.
/// A global VMMap that manages the mapping of spaces to virtual memory ranges.
pub static ref VM_MAP: Box<dyn VMMap + Send + Sync> = layout::create_vm_map();
/// A global Mmapper for mmaping and protection of virtual memory.
pub static ref MMAPPER: Box<dyn Mmapper + Send + Sync> = layout::create_mmapper();
}
use crate::util::rust_util::InitializeOnce;
// A global space function table that allows efficient dispatch space specific code for addresses in our heap.
pub static SFT_MAP: InitializeOnce<Box<dyn SFTMap>> = InitializeOnce::new();
/// MMTk builder. This is used to set options and other settings before actually creating an MMTk instance.
pub struct MMTKBuilder {
/// The options for this instance.
pub options: Options,
}
impl MMTKBuilder {
/// Create an MMTK builder with options read from environment variables, or using built-in
/// default if not overridden by environment variables.
pub fn new() -> Self {
let mut builder = Self::new_no_env_vars();
builder.options.read_env_var_settings();
builder
}
/// Create an MMTK builder with build-in default options, but without reading options from
/// environment variables.
pub fn new_no_env_vars() -> Self {
MMTKBuilder {
options: Options::default(),
}
}
/// Set an option.
pub fn set_option(&mut self, name: &str, val: &str) -> bool {
self.options.set_from_command_line(name, val)
}
/// Set multiple options by a string. The string should be key-value pairs separated by white spaces,
/// such as `threads=1 stress_factor=4096`.
pub fn set_options_bulk_by_str(&mut self, options: &str) -> bool {
self.options.set_bulk_from_command_line(options)
}
/// Custom VM layout constants. VM bindings may use this function for compressed or 39-bit heap support.
/// This function must be called before MMTk::new()
pub fn set_vm_layout(&mut self, constants: VMLayout) {
VMLayout::set_custom_vm_layout(constants)
}
/// Build an MMTk instance from the builder.
pub fn build<VM: VMBinding>(&self) -> MMTK<VM> {
MMTK::new(Arc::new(self.options.clone()))
}
}
impl Default for MMTKBuilder {
fn default() -> Self {
Self::new()
}
}
/// An MMTk instance. MMTk allows multiple instances to run independently, and each instance gives users a separate heap.
/// *Note that multi-instances is not fully supported yet*
pub struct MMTK<VM: VMBinding> {
pub(crate) options: Arc<Options>,
pub(crate) state: Arc<GlobalState>,
pub(crate) plan: UnsafeCell<Box<dyn Plan<VM = VM>>>,
pub(crate) reference_processors: ReferenceProcessors,
pub(crate) finalizable_processor:
Mutex<FinalizableProcessor<<VM::VMReferenceGlue as ReferenceGlue<VM>>::FinalizableType>>,
pub(crate) scheduler: Arc<GCWorkScheduler<VM>>,
#[cfg(feature = "sanity")]
pub(crate) sanity_checker: Mutex<SanityChecker<VM::VMSlot>>,
#[cfg(feature = "extreme_assertions")]
pub(crate) slot_logger: SlotLogger<VM::VMSlot>,
pub(crate) gc_trigger: Arc<GCTrigger<VM>>,
pub(crate) gc_requester: Arc<GCRequester<VM>>,
pub(crate) stats: Arc<Stats>,
inside_harness: AtomicBool,
#[cfg(feature = "sanity")]
inside_sanity: AtomicBool,
/// Analysis counters. The feature analysis allows us to periodically stop the world and collect some statistics.
#[cfg(feature = "analysis")]
pub(crate) analysis_manager: Arc<AnalysisManager<VM>>,
}
unsafe impl<VM: VMBinding> Sync for MMTK<VM> {}
unsafe impl<VM: VMBinding> Send for MMTK<VM> {}
impl<VM: VMBinding> MMTK<VM> {
/// Create an MMTK instance. This is not public. Bindings should use [`MMTKBuilder::build`].
pub(crate) fn new(options: Arc<Options>) -> Self {
// Initialize SFT first in case we need to use this in the constructor.
// The first call will initialize SFT map. Other calls will be blocked until SFT map is initialized.
crate::policy::sft_map::SFTRefStorage::pre_use_check();
SFT_MAP.initialize_once(&create_sft_map);
let num_workers = if cfg!(feature = "single_worker") {
1
} else {
*options.threads
};
let scheduler = GCWorkScheduler::new(num_workers, (*options.thread_affinity).clone());
let state = Arc::new(GlobalState::default());
let gc_requester = Arc::new(GCRequester::new(scheduler.clone()));
let gc_trigger = Arc::new(GCTrigger::new(
options.clone(),
gc_requester.clone(),
state.clone(),
));
let stats = Arc::new(Stats::new(&options));
// We need this during creating spaces, but we do not use this once the MMTk instance is created.
// So we do not save it in MMTK. This may change in the future.
let mut heap = HeapMeta::new();
let mut plan = crate::plan::create_plan(
*options.plan,
CreateGeneralPlanArgs {
vm_map: VM_MAP.as_ref(),
mmapper: MMAPPER.as_ref(),
options: options.clone(),
state: state.clone(),
gc_trigger: gc_trigger.clone(),
scheduler: scheduler.clone(),
stats: &stats,
heap: &mut heap,
},
);
// We haven't finished creating MMTk. No one is using the GC trigger. We cast the arc into a mutable reference.
{
// TODO: use Arc::get_mut_unchecked() when it is availble.
let gc_trigger: &mut GCTrigger<VM> =
unsafe { &mut *(Arc::as_ptr(&gc_trigger) as *mut _) };
// We know the plan address will not change. Cast it to a static reference.
let static_plan: &'static dyn Plan<VM = VM> = unsafe { &*(&*plan as *const _) };
// Set the plan so we can trigger GC and check GC condition without using plan
gc_trigger.set_plan(static_plan);
}
// TODO: This probably does not work if we have multiple MMTk instances.
// This needs to be called after we create Plan. It needs to use HeapMeta, which is gradually built when we create spaces.
VM_MAP.finalize_static_space_map(
heap.get_discontig_start(),
heap.get_discontig_end(),
&mut |start_address| {
plan.for_each_space_mut(&mut |space| {
// If the `VMMap` has a discontiguous memory range, we notify all discontiguous
// space that the starting address has been determined.
if let Some(pr) = space.maybe_get_page_resource_mut() {
pr.update_discontiguous_start(start_address);
}
})
},
);
MMTK {
options,
state,
plan: UnsafeCell::new(plan),
reference_processors: ReferenceProcessors::new(),
finalizable_processor: Mutex::new(FinalizableProcessor::<
<VM::VMReferenceGlue as ReferenceGlue<VM>>::FinalizableType,
>::new()),
scheduler,
#[cfg(feature = "sanity")]
sanity_checker: Mutex::new(SanityChecker::new()),
#[cfg(feature = "sanity")]
inside_sanity: AtomicBool::new(false),
inside_harness: AtomicBool::new(false),
#[cfg(feature = "extreme_assertions")]
slot_logger: SlotLogger::new(),
#[cfg(feature = "analysis")]
analysis_manager: Arc::new(AnalysisManager::new(stats.clone())),
gc_trigger,
gc_requester,
stats,
}
}
/// Initialize the GC worker threads that are required for doing garbage collections.
/// This is a mandatory call for a VM during its boot process once its thread system
/// is ready.
///
/// Internally, this function will invoke [`Collection::spawn_gc_thread()`] to spawn GC worker
/// threads.
///
/// # Arguments
///
/// * `tls`: The thread that wants to enable the collection. This value will be passed back
/// to the VM in [`Collection::spawn_gc_thread()`] so that the VM knows the context.
///
/// [`Collection::spawn_gc_thread()`]: crate::vm::Collection::spawn_gc_thread()
pub fn initialize_collection(&'static self, tls: VMThread) {
assert!(
!self.state.is_initialized(),
"MMTk collection has been initialized (was initialize_collection() already called before?)"
);
self.scheduler.spawn_gc_threads(self, tls);
self.state.initialized.store(true, Ordering::SeqCst);
probe!(mmtk, collection_initialized);
}
/// Prepare an MMTk instance for calling the `fork()` system call.
///
/// The `fork()` system call is available on Linux and some UNIX variants, and may be emulated
/// on other platforms by libraries such as Cygwin. The properties of the `fork()` system call
/// requires the users to do some preparation before calling it.
///
/// - **Multi-threading**: If `fork()` is called when the process has multiple threads, it
/// will only duplicate the current thread into the child process, and the child process can
/// only call async-signal-safe functions, notably `exec()`. For VMs that that use
/// multi-process concurrency, it is imperative that when calling `fork()`, only one thread may
/// exist in the process.
///
/// - **File descriptors**: The child process inherits copies of the parent's set of open
/// file descriptors. This may or may not be desired depending on use cases.
///
/// This function helps VMs that use `fork()` for multi-process concurrency. It instructs all
/// GC threads to save their contexts and return from their entry-point functions. Currently,
/// such threads only include GC workers, and the entry point is
/// [`crate::memory_manager::start_worker`]. A subsequent call to `MMTK::after_fork()` will
/// re-spawn the threads using their saved contexts. The VM must not allocate objects in the
/// MMTk heap before calling `MMTK::after_fork()`.
///
/// TODO: Currently, the MMTk core does not keep any files open for a long time. In the
/// future, this function and the `after_fork` function may be used for handling open file
/// descriptors across invocations of `fork()`. One possible use case is logging GC activities
/// and statistics to files, such as performing heap dumps across multiple GCs.
///
/// If a VM intends to execute another program by calling `fork()` and immediately calling
/// `exec`, it may skip this function because the state of the MMTk instance will be irrelevant
/// in that case.
///
/// # Caution!
///
/// This function sends an asynchronous message to GC threads and returns immediately, but it
/// is only safe for the VM to call `fork()` after the underlying **native threads** of the GC
/// threads have exited. After calling this function, the VM should wait for their underlying
/// native threads to exit in VM-specific manner before calling `fork()`.
pub fn prepare_to_fork(&'static self) {
assert!(
self.state.is_initialized(),
"MMTk collection has not been initialized, yet (was initialize_collection() called before?)"
);
probe!(mmtk, prepare_to_fork);
self.scheduler.stop_gc_threads_for_forking();
}
/// Call this function after the VM called the `fork()` system call.
///
/// This function will re-spawn MMTk threads from saved contexts.
///
/// # Arguments
///
/// * `tls`: The thread that wants to respawn MMTk threads after forking. This value will be
/// passed back to the VM in `Collection::spawn_gc_thread()` so that the VM knows the
/// context.
pub fn after_fork(&'static self, tls: VMThread) {
assert!(
self.state.is_initialized(),
"MMTk collection has not been initialized, yet (was initialize_collection() called before?)"
);
probe!(mmtk, after_fork);
self.scheduler.respawn_gc_threads_after_forking(tls);
}
/// Generic hook to allow benchmarks to be harnessed. MMTk will trigger a GC
/// to clear any residual garbage and start collecting statistics for the benchmark.
/// This is usually called by the benchmark harness as its last step before the actual benchmark.
pub fn harness_begin(&self, tls: VMMutatorThread) {
probe!(mmtk, harness_begin);
self.handle_user_collection_request(tls, true, true);
self.inside_harness.store(true, Ordering::SeqCst);
self.stats.start_all();
self.scheduler.enable_stat();
}
/// Generic hook to allow benchmarks to be harnessed. MMTk will stop collecting
/// statistics, and print out the collected statistics in a defined format.
/// This is usually called by the benchmark harness right after the actual benchmark.
pub fn harness_end(&'static self) {
self.stats.stop_all(self);
self.inside_harness.store(false, Ordering::SeqCst);
probe!(mmtk, harness_end);
}
#[cfg(feature = "sanity")]
pub(crate) fn sanity_begin(&self) {
self.inside_sanity.store(true, Ordering::Relaxed)
}
#[cfg(feature = "sanity")]
pub(crate) fn sanity_end(&self) {
self.inside_sanity.store(false, Ordering::Relaxed)
}
#[cfg(feature = "sanity")]
pub(crate) fn is_in_sanity(&self) -> bool {
self.inside_sanity.load(Ordering::Relaxed)
}
pub(crate) fn set_gc_status(&self, s: GcStatus) {
let mut gc_status = self.state.gc_status.lock().unwrap();
if *gc_status == GcStatus::NotInGC {
self.state.stacks_prepared.store(false, Ordering::SeqCst);
// FIXME stats
self.stats.start_gc();
}
*gc_status = s;
if *gc_status == GcStatus::NotInGC {
// FIXME stats
if self.stats.get_gathering_stats() {
self.stats.end_gc();
}
}
}
/// Return true if a collection is in progress.
pub fn gc_in_progress(&self) -> bool {
*self.state.gc_status.lock().unwrap() != GcStatus::NotInGC
}
/// Return true if a collection is in progress and past the preparatory stage.
pub fn gc_in_progress_proper(&self) -> bool {
*self.state.gc_status.lock().unwrap() == GcStatus::GcProper
}
/// Return true if the current GC is an emergency GC.
///
/// An emergency GC happens when a normal GC cannot reclaim enough memory to satisfy allocation
/// requests. Plans may do full-heap GC, defragmentation, etc. during emergency in order to
/// free up more memory.
///
/// VM bindings can call this function during GC to check if the current GC is an emergency GC.
/// If it is, the VM binding is recommended to retain fewer objects than normal GCs, to the
/// extent allowed by the specification of the VM or langauge. For example, the VM binding may
/// choose not to retain objects used for caching. Specifically, for Java virtual machines,
/// that means not retaining referents of [`SoftReference`][java-soft-ref] which is primarily
/// designed for implementing memory-sensitive caches.
///
/// [java-soft-ref]: https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/ref/SoftReference.html
pub fn is_emergency_collection(&self) -> bool {
self.state.is_emergency_collection()
}
/// Return true if the current GC is trigger manually by the user/binding.
pub fn is_user_triggered_collection(&self) -> bool {
self.state.is_user_triggered_collection()
}
/// The application code has requested a collection. This is just a GC hint, and
/// we may ignore it.
///
/// Returns whether a GC was ran or not. If MMTk triggers a GC, this method will block the
/// calling thread and return true when the GC finishes. Otherwise, this method returns
/// false immediately.
///
/// # Arguments
/// * `tls`: The mutator thread that requests the GC
/// * `force`: The request cannot be ignored (except for NoGC)
/// * `exhaustive`: The requested GC should be exhaustive. This is also a hint.
pub fn handle_user_collection_request(
&self,
tls: VMMutatorThread,
force: bool,
exhaustive: bool,
) -> bool {
use crate::vm::Collection;
if !self.get_plan().constraints().collects_garbage {
warn!("User attempted a collection request, but the plan can not do GC. The request is ignored.");
return false;
}
if force || !*self.options.ignore_system_gc && VM::VMCollection::is_collection_enabled() {
info!("User triggering collection");
if exhaustive {
if let Some(gen) = self.get_plan().generational() {
gen.force_full_heap_collection();
}
}
self.state
.user_triggered_collection
.store(true, Ordering::Relaxed);
self.gc_requester.request();
VM::VMCollection::block_for_gc(tls);
return true;
}
false
}
/// MMTK has requested stop-the-world activity (e.g., stw within a concurrent gc).
// This is not used, as we do not have a concurrent plan.
#[allow(unused)]
pub fn trigger_internal_collection_request(&self) {
self.state
.last_internal_triggered_collection
.store(true, Ordering::Relaxed);
self.state
.internal_triggered_collection
.store(true, Ordering::Relaxed);
// TODO: The current `GCRequester::request()` is probably incorrect for internally triggered GC.
// Consider removing functions related to "internal triggered collection".
self.gc_requester.request();
}
/// Get a reference to the plan.
pub fn get_plan(&self) -> &dyn Plan<VM = VM> {
unsafe { &**(self.plan.get()) }
}
/// Get the plan as mutable reference.
///
/// # Safety
///
/// This is unsafe because the caller must ensure that the plan is not used by other threads.
#[allow(clippy::mut_from_ref)]
pub unsafe fn get_plan_mut(&self) -> &mut dyn Plan<VM = VM> {
&mut **(self.plan.get())
}
/// Get the run time options.
pub fn get_options(&self) -> &Options {
&self.options
}
/// Enumerate objects in all spaces in this MMTK instance.
///
/// The call-back function `f` is called for every object that has the valid object bit (VO
/// bit), i.e. objects that are allocated in the heap of this MMTK instance, but has not been
/// reclaimed, yet.
///
/// # Notes about object initialization and finalization
///
/// When this function visits an object, it only guarantees that its VO bit must have been set.
/// It is not guaranteed if the object has been "fully initialized" in the sense of the
/// programming language the VM is implementing. For example, the object header and the type
/// information may not have been written.
///
/// It will also visit objects that have been "finalized" in the sense of the programming
/// langauge the VM is implementing, as long as the object has not been reclaimed by the GC,
/// yet. Be careful. If the object header is destroyed, it may not be safe to access such
/// objects in the high-level language.
///
/// # Interaction with allocation and GC
///
/// This function does not mutate the heap. It is safe if multiple threads execute this
/// function concurrently during mutator time.
///
/// It has *undefined behavior* if allocation or GC happens while this function is being
/// executed. The VM binding must ensure no threads are allocating and GC does not start while
/// executing this function. One way to do this is stopping all mutators before calling this
/// function.
///
/// Some high-level languages may provide an API that allows the user to allocate objects and
/// trigger GC while enumerating objects. One example is [`ObjectSpace::each_object`][os_eo] in
/// Ruby. The VM binding may use the callback of this function to save all visited object
/// references and let the user visit those references after this function returns. Make sure
/// those saved references are in the root set or in an object that will live through GCs before
/// the high-level language finishes visiting the saved object references.
///
/// [os_eo]: https://docs.ruby-lang.org/en/master/ObjectSpace.html#method-c-each_object
#[cfg(feature = "vo_bit")]
pub fn enumerate_objects<F>(&self, f: F)
where
F: FnMut(ObjectReference),
{
use crate::util::object_enum;
let mut enumerator = object_enum::ClosureObjectEnumerator::<_, VM>::new(f);
let plan = self.get_plan();
plan.for_each_space(&mut |space| {
space.enumerate_objects(&mut enumerator);
})
}
}