1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
//! This module provides an iterator that groups adjacent items with the same key.
//!
//! It gives all `Iterator + Clone` iterators a new method: `.revisitable_group_by`. It is similar
//! to `Itertools::group_by`, but it lets the user know the length of each group before iterating
//! through the group. Implementation-wise, it eagerly finds all items with the same key, and
//! then lets the user traverse the same range of items again using a pre-cloned iterator. This
//! is why it is named "revisitable" group-by.
//!
//! This is useful for the memory mapper to coalesce the `mmap` call for adjacent chunks that have
//! the same `MapState`. The memory mapper needs to know the size of each group to compute the
//! memory range the group of `MapState` covers in order to call `mmap`, and then traverse the
//! group of `MapState` again to update them.
//!
//! The `.revisitable_group_by` method takes a closure for computing the keys of each item.
//! Adjacent items with the same key will be put into the same group.
//!
//! The following example groups adjacent even or odd numbers together.
//!
//! ```rs
//! let nums = [1, 3, 5, 2, 4, 6, 7, 9];
//! for group in nums.iter().revisitable_group_by(|x| *x % 2) {
//! println!("key: {}, len: {}", group.key, group.len);
//! for x in group {
//! println!(" x: {}", *x);
//! }
//! }
//! ```
//!
//! It should form three groups, `[1, 3, 5]`, `[2, 4, 6]` and `[7, 9]`, with the keys being 1, 0
//! and 1, respectively.
//!
//! It can be used with the `.flatten()` method to make groups across the boundaries of several
//! iterable items.
//!
//! ```rs
//! let slice_of_slices: &[&[i32]] = &[&[10, 20], &[30, 40, 11, 21], &[31, 12, 22]];
//! let result = slice_of_slices.iter().copied().flatten().copied()
//! .revisitable_group_by(|x| x % 10)
//! .map(|group| group.collect::<Vec<_>>())
//! .collect::<Vec<_>>();
//! assert_eq!(
//! result,
//! vec![vec![10, 20, 30, 40], vec![11, 21, 31], vec![12, 22]],
//! );
//! ```
/// This trait provides the `revisitable_group_by` method for all `Iterator` that also implements
/// `Clone`.
pub(crate) trait RevisitableGroupByForIterator {
type Item;
type Iter: Iterator<Item = Self::Item> + Clone;
/// Group adjacent items by key. `get_key` is a closure that computes the key.
fn revisitable_group_by<K, F>(
self,
get_key: F,
) -> RevisitableGroupBy<Self::Item, K, Self::Iter, F>
where
K: PartialEq + Copy,
F: FnMut(&Self::Item) -> K;
}
impl<I: Iterator + Clone> RevisitableGroupByForIterator for I {
type Item = <I as Iterator>::Item;
type Iter = I;
fn revisitable_group_by<K, F>(
self,
get_key: F,
) -> RevisitableGroupBy<Self::Item, K, Self::Iter, F>
where
K: PartialEq + Copy,
F: FnMut(&Self::Item) -> K,
{
RevisitableGroupBy {
iter: self,
get_key,
next_group_initial: None,
}
}
}
/// An iterator through groups of items with the same key.
pub(crate) struct RevisitableGroupBy<T, K, I, F>
where
K: PartialEq + Copy,
I: Iterator<Item = T> + Clone,
F: FnMut(&T) -> K,
{
/// The underlying iterator.
iter: I,
/// The function to get the key.
get_key: F,
/// Temporarily save the item and key of the next group when peeking.
next_group_initial: Option<(T, K)>,
}
impl<T, K, I, F> Iterator for RevisitableGroupBy<T, K, I, F>
where
K: PartialEq + Copy,
I: Iterator<Item = T> + Clone,
F: FnMut(&T) -> K,
{
type Item = RevisitableGroup<T, K, I>;
fn next(&mut self) -> Option<Self::Item> {
let (group_head, group_key) = if let Some((head, key)) = self.next_group_initial.take() {
// We already peeked the item of the next group the last time `next()` was called.
// Count that in.
(head, key)
} else {
// Either we haven't start iterating, yet, or we already exhausted the iter.
// Get the next item from the underlying iter.
if let Some(item) = self.iter.next() {
// The next group has at least one item.
// This is the key of the group.
let key = (self.get_key)(&item);
(item, key)
} else {
return None;
}
};
// If reached here, the group must have at least one item.
let mut group_size = 1;
// Get the rest of the group.
let saved_iter = self.iter.clone();
loop {
if let Some(item) = self.iter.next() {
// The next item exists. It either belongs to the current group or not.
let key = (self.get_key)(&item);
if key == group_key {
// It is in the same group.
group_size += 1;
} else {
// It belongs to the next group. Save the item and the key...
self.next_group_initial = Some((item, key));
// ... and we have a group now.
break;
}
} else {
// No more items. This is the last group.
debug_assert!(self.next_group_initial.is_none());
break;
}
}
Some(RevisitableGroup {
key: group_key,
len: group_size,
head: Some(group_head),
iter: saved_iter,
remaining: group_size,
})
}
}
pub(crate) struct RevisitableGroup<T, K, I>
where
K: PartialEq + Copy,
I: Iterator<Item = T>,
{
/// The key of this group.
pub key: K,
/// The length of this group.
pub len: usize,
/// The first item. Note that `iter` starts from the second element due to the way we clone it.
head: Option<T>,
/// The underlying iterator.
iter: I,
/// The number of items remain to be iterated.
remaining: usize,
}
impl<T, K, I> Iterator for RevisitableGroup<T, K, I>
where
K: PartialEq + Copy,
I: Iterator<Item = T>,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
if self.remaining == 0 {
None
} else {
self.remaining -= 1;
if let Some(item) = self.head.take() {
Some(item)
} else {
let result = self.iter.next();
debug_assert!(result.is_some());
result
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_simple_group_by() {
let nums = [1, 3, 5, 2, 4, 6, 7, 9];
let grouped = nums
.iter()
.revisitable_group_by(|x| *x % 2)
.map(|group| (group.key, group.len, group.copied().collect::<Vec<_>>()))
.collect::<Vec<_>>();
assert_eq!(
grouped,
vec![
(1, 3, vec![1, 3, 5]),
(0, 3, vec![2, 4, 6]),
(1, 2, vec![7, 9]),
]
);
}
#[test]
#[allow(clippy::never_loop)] // We are testing with empty slices. The panic in the loop body should not run.
fn test_empty_outer_slice() {
let slice_of_slices: &[&[i32]] = &[];
for _group in slice_of_slices
.iter()
.copied()
.flatten()
.copied()
.revisitable_group_by(|_| 42)
{
panic!("There is no item!");
}
}
#[test]
#[allow(clippy::never_loop)] // We are testing with empty slices. The panic in the loop body should not run.
fn test_empty_inner_slice() {
let slice_of_slices: &[&[i32]] = &[&[], &[], &[]];
for _group in slice_of_slices
.iter()
.copied()
.flatten()
.copied()
.revisitable_group_by(|_| 42)
{
panic!("There is no item!");
}
}
#[test]
fn test_single_item() {
let slice_of_slices: &[&[i32]] = &[&[1]];
for group in slice_of_slices
.iter()
.copied()
.flatten()
.copied()
.revisitable_group_by(|_| 42)
{
assert_eq!(group.key, 42);
}
}
#[test]
fn test_single_slice_multi_item() {
let slice_of_slices: &[&[i32]] = &[&[1, 3, 5, 2, 4, 6, 7]];
let result = slice_of_slices
.iter()
.copied()
.flatten()
.copied()
.revisitable_group_by(|x| x % 2)
.map(|group| (group.key, group.len, group.collect::<Vec<_>>()))
.collect::<Vec<_>>();
assert_eq!(
result,
vec![
(1, 3, vec![1, 3, 5]),
(0, 3, vec![2, 4, 6]),
(1, 1, vec![7])
]
);
}
#[test]
fn test_multi_slice_multi_item() {
let slice_of_slices: &[&[i32]] = &[&[10, 20], &[11, 21, 31], &[12, 22, 32, 42]];
let result = slice_of_slices
.iter()
.copied()
.flatten()
.copied()
.revisitable_group_by(|x| x % 10)
.map(|group| (group.key, group.len, group.collect::<Vec<_>>()))
.collect::<Vec<_>>();
assert_eq!(
result,
vec![
(0, 2, vec![10, 20]),
(1, 3, vec![11, 21, 31]),
(2, 4, vec![12, 22, 32, 42])
]
);
}
#[test]
fn test_cross_slice_groups() {
let slice_of_slices: &[&[i32]] = &[&[10, 20], &[30, 40, 11, 21], &[31, 12, 22]];
let result = slice_of_slices
.iter()
.copied()
.flatten()
.copied()
.revisitable_group_by(|x| x % 10)
.map(|group| (group.key, group.len, group.collect::<Vec<_>>()))
.collect::<Vec<_>>();
assert_eq!(
result,
vec![
(0, 4, vec![10, 20, 30, 40]),
(1, 3, vec![11, 21, 31]),
(2, 2, vec![12, 22])
]
);
}
#[test]
fn test_cross_slice_groups2() {
let slice_of_slices: &[&[i32]] = &[&[10, 20, 11], &[21, 31, 41], &[51, 61], &[71, 12, 22]];
let result = slice_of_slices
.iter()
.cloned()
.flatten()
.copied()
.revisitable_group_by(|x| x % 10)
.map(|group| (group.key, group.len, group.collect::<Vec<_>>()))
.collect::<Vec<_>>();
assert_eq!(
result,
vec![
(0, 2, vec![10, 20]),
(1, 7, vec![11, 21, 31, 41, 51, 61, 71]),
(2, 2, vec![12, 22])
]
);
}
#[test]
fn test_internal_mutability() {
use std::sync::atomic::{AtomicUsize, Ordering};
let slab0 = vec![
AtomicUsize::new(1),
AtomicUsize::new(3),
AtomicUsize::new(2),
];
let slab1 = vec![
AtomicUsize::new(4),
AtomicUsize::new(6),
AtomicUsize::new(5),
];
let slab2 = vec![
AtomicUsize::new(7),
AtomicUsize::new(9),
AtomicUsize::new(10),
];
// Note: We only take the first two elements from slab2,
// because the mmapper sometimes processes part of a slab.
let slices: Vec<&[AtomicUsize]> = vec![&slab0[0..3], &slab1[0..3], &slab2[0..2]];
let mut collected = vec![];
for group in slices
.iter()
.copied()
.flatten()
.revisitable_group_by(|x| x.load(Ordering::SeqCst) % 2)
{
let mut group_collected = vec![];
let key = group.key;
for elem in group {
let value = elem.load(Ordering::SeqCst);
group_collected.push(value);
let new_value = value * 100 + key;
elem.store(new_value, Ordering::SeqCst);
}
collected.push(group_collected);
}
assert_eq!(collected, vec![vec![1, 3], vec![2, 4, 6], vec![5, 7, 9]]);
let load_all = |slab: Vec<AtomicUsize>| {
slab.iter()
.map(|x| x.load(Ordering::SeqCst))
.collect::<Vec<_>>()
};
assert_eq!(load_all(slab0), vec![101, 301, 200]);
assert_eq!(load_all(slab1), vec![400, 600, 501]);
assert_eq!(load_all(slab2), vec![701, 901, 10]); // The last item should not be affected.
}
}