mmtk/scheduler/
gc_work.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
use super::work_bucket::WorkBucketStage;
use super::*;
use crate::global_state::GcStatus;
use crate::plan::ObjectsClosure;
use crate::plan::VectorObjectQueue;
use crate::util::*;
use crate::vm::slot::Slot;
use crate::vm::*;
use crate::*;
use std::marker::PhantomData;
use std::ops::{Deref, DerefMut};

pub struct ScheduleCollection;

impl<VM: VMBinding> GCWork<VM> for ScheduleCollection {
    fn do_work(&mut self, worker: &mut GCWorker<VM>, mmtk: &'static MMTK<VM>) {
        // Tell GC trigger that GC started.
        mmtk.gc_trigger.policy.on_gc_start(mmtk);

        // Determine collection kind
        let is_emergency = mmtk.state.set_collection_kind(
            mmtk.get_plan().last_collection_was_exhaustive(),
            mmtk.gc_trigger.policy.can_heap_size_grow(),
        );
        if is_emergency {
            mmtk.get_plan().notify_emergency_collection();
        }
        // Set to GcPrepare
        mmtk.set_gc_status(GcStatus::GcPrepare);

        // Let the plan to schedule collection work
        mmtk.get_plan().schedule_collection(worker.scheduler());
    }
}

/// The global GC Preparation Work
/// This work packet invokes prepare() for the plan (which will invoke prepare() for each space), and
/// pushes work packets for preparing mutators and collectors.
/// We should only have one such work packet per GC, before any actual GC work starts.
/// We assume this work packet is the only running work packet that accesses plan, and there should
/// be no other concurrent work packet that accesses plan (read or write). Otherwise, there may
/// be a race condition.
pub struct Prepare<C: GCWorkContext> {
    pub plan: *const C::PlanType,
}

unsafe impl<C: GCWorkContext> Send for Prepare<C> {}

impl<C: GCWorkContext> Prepare<C> {
    pub fn new(plan: *const C::PlanType) -> Self {
        Self { plan }
    }
}

impl<C: GCWorkContext> GCWork<C::VM> for Prepare<C> {
    fn do_work(&mut self, worker: &mut GCWorker<C::VM>, mmtk: &'static MMTK<C::VM>) {
        trace!("Prepare Global");
        // We assume this is the only running work packet that accesses plan at the point of execution
        let plan_mut: &mut C::PlanType = unsafe { &mut *(self.plan as *const _ as *mut _) };
        plan_mut.prepare(worker.tls);

        if plan_mut.constraints().needs_prepare_mutator {
            let prepare_mutator_packets = <C::VM as VMBinding>::VMActivePlan::mutators()
                .map(|mutator| Box::new(PrepareMutator::<C::VM>::new(mutator)) as _)
                .collect::<Vec<_>>();
            // Just in case the VM binding is inconsistent about the number of mutators and the actual mutator list.
            debug_assert_eq!(
                prepare_mutator_packets.len(),
                <C::VM as VMBinding>::VMActivePlan::number_of_mutators()
            );
            mmtk.scheduler.work_buckets[WorkBucketStage::Prepare].bulk_add(prepare_mutator_packets);
        }

        for w in &mmtk.scheduler.worker_group.workers_shared {
            let result = w.designated_work.push(Box::new(PrepareCollector));
            debug_assert!(result.is_ok());
        }
    }
}

/// The mutator GC Preparation Work
pub struct PrepareMutator<VM: VMBinding> {
    // The mutator reference has static lifetime.
    // It is safe because the actual lifetime of this work-packet will not exceed the lifetime of a GC.
    pub mutator: &'static mut Mutator<VM>,
}

impl<VM: VMBinding> PrepareMutator<VM> {
    pub fn new(mutator: &'static mut Mutator<VM>) -> Self {
        Self { mutator }
    }
}

impl<VM: VMBinding> GCWork<VM> for PrepareMutator<VM> {
    fn do_work(&mut self, worker: &mut GCWorker<VM>, _mmtk: &'static MMTK<VM>) {
        trace!("Prepare Mutator");
        self.mutator.prepare(worker.tls);
    }
}

/// The collector GC Preparation Work
#[derive(Default)]
pub struct PrepareCollector;

impl<VM: VMBinding> GCWork<VM> for PrepareCollector {
    fn do_work(&mut self, worker: &mut GCWorker<VM>, mmtk: &'static MMTK<VM>) {
        trace!("Prepare Collector");
        worker.get_copy_context_mut().prepare();
        mmtk.get_plan().prepare_worker(worker);
    }
}

/// The global GC release Work
/// This work packet invokes release() for the plan (which will invoke release() for each space), and
/// pushes work packets for releasing mutators and collectors.
/// We should only have one such work packet per GC, after all actual GC work ends.
/// We assume this work packet is the only running work packet that accesses plan, and there should
/// be no other concurrent work packet that accesses plan (read or write). Otherwise, there may
/// be a race condition.
pub struct Release<C: GCWorkContext> {
    pub plan: *const C::PlanType,
}

impl<C: GCWorkContext> Release<C> {
    pub fn new(plan: *const C::PlanType) -> Self {
        Self { plan }
    }
}

unsafe impl<C: GCWorkContext> Send for Release<C> {}

impl<C: GCWorkContext + 'static> GCWork<C::VM> for Release<C> {
    fn do_work(&mut self, worker: &mut GCWorker<C::VM>, mmtk: &'static MMTK<C::VM>) {
        trace!("Release Global");

        mmtk.gc_trigger.policy.on_gc_release(mmtk);
        // We assume this is the only running work packet that accesses plan at the point of execution

        let plan_mut: &mut C::PlanType = unsafe { &mut *(self.plan as *const _ as *mut _) };
        plan_mut.release(worker.tls);

        let release_mutator_packets = <C::VM as VMBinding>::VMActivePlan::mutators()
            .map(|mutator| Box::new(ReleaseMutator::<C::VM>::new(mutator)) as _)
            .collect::<Vec<_>>();
        // Just in case the VM binding is inconsistent about the number of mutators and the actual mutator list.
        debug_assert_eq!(
            release_mutator_packets.len(),
            <C::VM as VMBinding>::VMActivePlan::number_of_mutators()
        );
        mmtk.scheduler.work_buckets[WorkBucketStage::Release].bulk_add(release_mutator_packets);

        for w in &mmtk.scheduler.worker_group.workers_shared {
            let result = w.designated_work.push(Box::new(ReleaseCollector));
            debug_assert!(result.is_ok());
        }

        if *mmtk.get_options().count_live_bytes_in_gc {
            let live_bytes = mmtk
                .scheduler
                .worker_group
                .get_and_clear_worker_live_bytes();
            *mmtk.state.live_bytes_in_last_gc.borrow_mut() =
                mmtk.aggregate_live_bytes_in_last_gc(live_bytes);
        }
    }
}

/// The mutator release Work
pub struct ReleaseMutator<VM: VMBinding> {
    // The mutator reference has static lifetime.
    // It is safe because the actual lifetime of this work-packet will not exceed the lifetime of a GC.
    pub mutator: &'static mut Mutator<VM>,
}

impl<VM: VMBinding> ReleaseMutator<VM> {
    pub fn new(mutator: &'static mut Mutator<VM>) -> Self {
        Self { mutator }
    }
}

impl<VM: VMBinding> GCWork<VM> for ReleaseMutator<VM> {
    fn do_work(&mut self, worker: &mut GCWorker<VM>, _mmtk: &'static MMTK<VM>) {
        trace!("Release Mutator");
        self.mutator.release(worker.tls);
    }
}

/// The collector release Work
#[derive(Default)]
pub struct ReleaseCollector;

impl<VM: VMBinding> GCWork<VM> for ReleaseCollector {
    fn do_work(&mut self, worker: &mut GCWorker<VM>, _mmtk: &'static MMTK<VM>) {
        trace!("Release Collector");
        worker.get_copy_context_mut().release();
    }
}

/// Stop all mutators
///
/// TODO: Smaller work granularity
#[derive(Default)]
pub struct StopMutators<C: GCWorkContext>(PhantomData<C>);

impl<C: GCWorkContext> StopMutators<C> {
    pub fn new() -> Self {
        Self(PhantomData)
    }
}

impl<C: GCWorkContext> GCWork<C::VM> for StopMutators<C> {
    fn do_work(&mut self, worker: &mut GCWorker<C::VM>, mmtk: &'static MMTK<C::VM>) {
        trace!("stop_all_mutators start");
        mmtk.state.prepare_for_stack_scanning();
        <C::VM as VMBinding>::VMCollection::stop_all_mutators(worker.tls, |mutator| {
            // TODO: The stack scanning work won't start immediately, as the `Prepare` bucket is not opened yet (the bucket is opened in notify_mutators_paused).
            // Should we push to Unconstrained instead?
            mmtk.scheduler.work_buckets[WorkBucketStage::Prepare]
                .add(ScanMutatorRoots::<C>(mutator));
        });
        trace!("stop_all_mutators end");
        mmtk.scheduler.notify_mutators_paused(mmtk);
        mmtk.scheduler.work_buckets[WorkBucketStage::Prepare].add(ScanVMSpecificRoots::<C>::new());
    }
}

/// This implements `ObjectTracer` by forwarding the `trace_object` calls to the wrapped
/// `ProcessEdgesWork` instance.
pub(crate) struct ProcessEdgesWorkTracer<E: ProcessEdgesWork> {
    process_edges_work: E,
    stage: WorkBucketStage,
}

impl<E: ProcessEdgesWork> ObjectTracer for ProcessEdgesWorkTracer<E> {
    /// Forward the `trace_object` call to the underlying `ProcessEdgesWork`,
    /// and flush as soon as the underlying buffer of `process_edges_work` is full.
    fn trace_object(&mut self, object: ObjectReference) -> ObjectReference {
        let result = self.process_edges_work.trace_object(object);
        self.flush_if_full();
        result
    }
}

impl<E: ProcessEdgesWork> ProcessEdgesWorkTracer<E> {
    fn flush_if_full(&mut self) {
        if self.process_edges_work.nodes.is_full() {
            self.flush();
        }
    }

    pub fn flush_if_not_empty(&mut self) {
        if !self.process_edges_work.nodes.is_empty() {
            self.flush();
        }
    }

    fn flush(&mut self) {
        let next_nodes = self.process_edges_work.pop_nodes();
        assert!(!next_nodes.is_empty());
        let work_packet = self.process_edges_work.create_scan_work(next_nodes);
        let worker = self.process_edges_work.worker();
        worker.scheduler().work_buckets[self.stage].add(work_packet);
    }
}

/// This type implements `ObjectTracerContext` by creating a temporary `ProcessEdgesWork` during
/// the call to `with_tracer`, making use of its `trace_object` method.  It then creates work
/// packets using the methods of the `ProcessEdgesWork` and add the work packet into the given
/// `stage`.
pub(crate) struct ProcessEdgesWorkTracerContext<E: ProcessEdgesWork> {
    stage: WorkBucketStage,
    phantom_data: PhantomData<E>,
}

impl<E: ProcessEdgesWork> Clone for ProcessEdgesWorkTracerContext<E> {
    fn clone(&self) -> Self {
        Self { ..*self }
    }
}

impl<E: ProcessEdgesWork> ObjectTracerContext<E::VM> for ProcessEdgesWorkTracerContext<E> {
    type TracerType = ProcessEdgesWorkTracer<E>;

    fn with_tracer<R, F>(&self, worker: &mut GCWorker<E::VM>, func: F) -> R
    where
        F: FnOnce(&mut Self::TracerType) -> R,
    {
        let mmtk = worker.mmtk;

        // Prepare the underlying ProcessEdgesWork
        let mut process_edges_work = E::new(vec![], false, mmtk, self.stage);
        // FIXME: This line allows us to omit the borrowing lifetime of worker.
        // We should refactor ProcessEdgesWork so that it uses `worker` locally, not as a member.
        process_edges_work.set_worker(worker);

        // Cretae the tracer.
        let mut tracer = ProcessEdgesWorkTracer {
            process_edges_work,
            stage: self.stage,
        };

        // The caller can use the tracer here.
        let result = func(&mut tracer);

        // Flush the queued nodes.
        tracer.flush_if_not_empty();

        result
    }
}

/// Delegate to the VM binding for weak reference processing.
///
/// Some VMs (e.g. v8) do not have a Java-like global weak reference storage, and the
/// processing of those weakrefs may be more complex. For such case, we delegate to the
/// VM binding to process weak references.
///
/// NOTE: This will replace `{Soft,Weak,Phantom}RefProcessing` and `Finalization` in the future.
pub struct VMProcessWeakRefs<E: ProcessEdgesWork> {
    phantom_data: PhantomData<E>,
}

impl<E: ProcessEdgesWork> VMProcessWeakRefs<E> {
    pub fn new() -> Self {
        Self {
            phantom_data: PhantomData,
        }
    }
}

impl<E: ProcessEdgesWork> GCWork<E::VM> for VMProcessWeakRefs<E> {
    fn do_work(&mut self, worker: &mut GCWorker<E::VM>, _mmtk: &'static MMTK<E::VM>) {
        trace!("VMProcessWeakRefs");

        let stage = WorkBucketStage::VMRefClosure;

        let need_to_repeat = {
            let tracer_factory = ProcessEdgesWorkTracerContext::<E> {
                stage,
                phantom_data: PhantomData,
            };
            <E::VM as VMBinding>::VMScanning::process_weak_refs(worker, tracer_factory)
        };

        if need_to_repeat {
            // Schedule Self as the new sentinel so we'll call `process_weak_refs` again after the
            // current transitive closure.
            let new_self = Box::new(Self::new());

            worker.scheduler().work_buckets[stage].set_sentinel(new_self);
        }
    }
}

/// Delegate to the VM binding for forwarding weak references.
///
/// Some VMs (e.g. v8) do not have a Java-like global weak reference storage, and the
/// processing of those weakrefs may be more complex. For such case, we delegate to the
/// VM binding to process weak references.
///
/// NOTE: This will replace `RefForwarding` and `ForwardFinalization` in the future.
pub struct VMForwardWeakRefs<E: ProcessEdgesWork> {
    phantom_data: PhantomData<E>,
}

impl<E: ProcessEdgesWork> VMForwardWeakRefs<E> {
    pub fn new() -> Self {
        Self {
            phantom_data: PhantomData,
        }
    }
}

impl<E: ProcessEdgesWork> GCWork<E::VM> for VMForwardWeakRefs<E> {
    fn do_work(&mut self, worker: &mut GCWorker<E::VM>, _mmtk: &'static MMTK<E::VM>) {
        trace!("VMForwardWeakRefs");

        let stage = WorkBucketStage::VMRefForwarding;

        let tracer_factory = ProcessEdgesWorkTracerContext::<E> {
            stage,
            phantom_data: PhantomData,
        };
        <E::VM as VMBinding>::VMScanning::forward_weak_refs(worker, tracer_factory)
    }
}

/// This work packet calls `Collection::post_forwarding`.
///
/// NOTE: This will replace `RefEnqueue` in the future.
///
/// NOTE: Although this work packet runs in parallel with the `Release` work packet, it does not
/// access the `Plan` instance.
#[derive(Default)]
pub struct VMPostForwarding<VM: VMBinding> {
    phantom_data: PhantomData<VM>,
}

impl<VM: VMBinding> GCWork<VM> for VMPostForwarding<VM> {
    fn do_work(&mut self, worker: &mut GCWorker<VM>, _mmtk: &'static MMTK<VM>) {
        trace!("VMPostForwarding start");
        <VM as VMBinding>::VMCollection::post_forwarding(worker.tls);
        trace!("VMPostForwarding end");
    }
}

pub struct ScanMutatorRoots<C: GCWorkContext>(pub &'static mut Mutator<C::VM>);

impl<C: GCWorkContext> GCWork<C::VM> for ScanMutatorRoots<C> {
    fn do_work(&mut self, worker: &mut GCWorker<C::VM>, mmtk: &'static MMTK<C::VM>) {
        trace!("ScanMutatorRoots for mutator {:?}", self.0.get_tls());
        let mutators = <C::VM as VMBinding>::VMActivePlan::number_of_mutators();
        let factory = ProcessEdgesWorkRootsWorkFactory::<
            C::VM,
            C::DefaultProcessEdges,
            C::PinningProcessEdges,
        >::new(mmtk);
        <C::VM as VMBinding>::VMScanning::scan_roots_in_mutator_thread(
            worker.tls,
            unsafe { &mut *(self.0 as *mut _) },
            factory,
        );
        self.0.flush();

        if mmtk.state.inform_stack_scanned(mutators) {
            <C::VM as VMBinding>::VMScanning::notify_initial_thread_scan_complete(
                false, worker.tls,
            );
            mmtk.set_gc_status(GcStatus::GcProper);
        }
    }
}

#[derive(Default)]
pub struct ScanVMSpecificRoots<C: GCWorkContext>(PhantomData<C>);

impl<C: GCWorkContext> ScanVMSpecificRoots<C> {
    pub fn new() -> Self {
        Self(PhantomData)
    }
}

impl<C: GCWorkContext> GCWork<C::VM> for ScanVMSpecificRoots<C> {
    fn do_work(&mut self, worker: &mut GCWorker<C::VM>, mmtk: &'static MMTK<C::VM>) {
        trace!("ScanStaticRoots");
        let factory = ProcessEdgesWorkRootsWorkFactory::<
            C::VM,
            C::DefaultProcessEdges,
            C::PinningProcessEdges,
        >::new(mmtk);
        <C::VM as VMBinding>::VMScanning::scan_vm_specific_roots(worker.tls, factory);
    }
}

pub struct ProcessEdgesBase<VM: VMBinding> {
    pub slots: Vec<VM::VMSlot>,
    pub nodes: VectorObjectQueue,
    mmtk: &'static MMTK<VM>,
    // Use raw pointer for fast pointer dereferencing, instead of using `Option<&'static mut GCWorker<E::VM>>`.
    // Because a copying gc will dereference this pointer at least once for every object copy.
    worker: *mut GCWorker<VM>,
    pub roots: bool,
    pub bucket: WorkBucketStage,
}

unsafe impl<VM: VMBinding> Send for ProcessEdgesBase<VM> {}

impl<VM: VMBinding> ProcessEdgesBase<VM> {
    // Requires an MMTk reference. Each plan-specific type that uses ProcessEdgesBase can get a static plan reference
    // at creation. This avoids overhead for dynamic dispatch or downcasting plan for each object traced.
    pub fn new(
        slots: Vec<VM::VMSlot>,
        roots: bool,
        mmtk: &'static MMTK<VM>,
        bucket: WorkBucketStage,
    ) -> Self {
        #[cfg(feature = "extreme_assertions")]
        if crate::util::slot_logger::should_check_duplicate_slots(mmtk.get_plan()) {
            for slot in &slots {
                // log slot, panic if already logged
                mmtk.slot_logger.log_slot(*slot);
            }
        }
        Self {
            slots,
            nodes: VectorObjectQueue::new(),
            mmtk,
            worker: std::ptr::null_mut(),
            roots,
            bucket,
        }
    }
    pub fn set_worker(&mut self, worker: &mut GCWorker<VM>) {
        self.worker = worker;
    }

    pub fn worker(&self) -> &'static mut GCWorker<VM> {
        unsafe { &mut *self.worker }
    }

    pub fn mmtk(&self) -> &'static MMTK<VM> {
        self.mmtk
    }

    pub fn plan(&self) -> &'static dyn Plan<VM = VM> {
        self.mmtk.get_plan()
    }

    /// Pop all nodes from nodes, and clear nodes to an empty vector.
    pub fn pop_nodes(&mut self) -> Vec<ObjectReference> {
        self.nodes.take()
    }

    pub fn is_roots(&self) -> bool {
        self.roots
    }
}

/// A short-hand for `<E::VM as VMBinding>::VMSlot`.
pub type SlotOf<E> = <<E as ProcessEdgesWork>::VM as VMBinding>::VMSlot;

/// An abstract trait for work packets that process object graph edges.  Its method
/// [`ProcessEdgesWork::trace_object`] traces an object and, upon first visit, enqueues it into an
/// internal queue inside the `ProcessEdgesWork` instance.  Each implementation of this trait
/// implement `trace_object` differently.  During [`Plan::schedule_collection`], plans select
/// (usually via `GCWorkContext`) specialized implementations of this trait to be used during each
/// trace according the nature of each trace, such as whether it is a nursery collection, whether it
/// is a defrag collection, whether it pins objects, etc.
///
/// This trait was originally designed for work packets that process object graph edges represented
/// as slots.  The constructor [`ProcessEdgesWork::new`] takes a vector of slots, and the created
/// work packet will trace the objects pointed by the object reference in each slot using the
/// `trace_object` method, and update the slot if the GC moves the target object when tracing.
///
/// This trait can also be used merely as a provider of the `trace_object` method by giving it an
/// empty vector of slots.  This is useful for node-enqueuing tracing
/// ([`Scanning::scan_object_and_trace_edges`]) as well as weak reference processing
/// ([`Scanning::process_weak_refs`] as well as `ReferenceProcessor` and `FinalizableProcessor`).
/// In those cases, the caller passes the reference to the target object to `trace_object`, an the
/// caller is responsible for updating the slots according the return value of `trace_object`.
///
/// TODO: We should refactor this trait to decouple it from slots. See:
/// <https://github.com/mmtk/mmtk-core/issues/599>
pub trait ProcessEdgesWork:
    Send + 'static + Sized + DerefMut + Deref<Target = ProcessEdgesBase<Self::VM>>
{
    /// The associate type for the VM.
    type VM: VMBinding;

    /// The work packet type for scanning objects when using this ProcessEdgesWork.
    type ScanObjectsWorkType: ScanObjectsWork<Self::VM>;

    /// The maximum number of slots that should be put to one of this work packets.
    /// The caller who creates a work packet of this trait should be responsible to
    /// comply with this capacity.
    /// Higher capacity means the packet will take longer to finish, and may lead to
    /// bad load balancing. On the other hand, lower capacity would lead to higher cost
    /// on scheduling many small work packets. It is important to find a proper capacity.
    const CAPACITY: usize = 4096;
    /// Do we update object reference? This has to be true for a moving GC.
    const OVERWRITE_REFERENCE: bool = true;
    /// If true, we do object scanning in this work packet with the same worker without scheduling overhead.
    /// If false, we will add object scanning work packets to the global queue and allow other workers to work on it.
    const SCAN_OBJECTS_IMMEDIATELY: bool = true;

    /// Create a [`ProcessEdgesWork`].
    ///
    /// Arguments:
    /// * `slots`: a vector of slots.
    /// * `roots`: are the objects root reachable objects?
    /// * `mmtk`: a reference to the MMTK instance.
    /// * `bucket`: which work bucket this packet belongs to. Further work generated from this packet will also be put to the same bucket.
    fn new(
        slots: Vec<SlotOf<Self>>,
        roots: bool,
        mmtk: &'static MMTK<Self::VM>,
        bucket: WorkBucketStage,
    ) -> Self;

    /// Trace an MMTk object. The implementation should forward this call to the policy-specific
    /// `trace_object()` methods, depending on which space this object is in.
    /// If the object is not in any MMTk space, the implementation should forward the call to
    /// `ActivePlan::vm_trace_object()` to let the binding handle the tracing.
    fn trace_object(&mut self, object: ObjectReference) -> ObjectReference;

    /// If the work includes roots, we will store the roots somewhere so for sanity GC, we can do another
    /// transitive closure from the roots.
    #[cfg(feature = "sanity")]
    fn cache_roots_for_sanity_gc(&mut self) {
        assert!(self.roots);
        self.mmtk()
            .sanity_checker
            .lock()
            .unwrap()
            .add_root_slots(self.slots.clone());
    }

    /// Start the a scan work packet. If SCAN_OBJECTS_IMMEDIATELY, the work packet will be executed immediately, in this method.
    /// Otherwise, the work packet will be added the Closure work bucket and will be dispatched later by the scheduler.
    fn start_or_dispatch_scan_work(&mut self, mut work_packet: impl GCWork<Self::VM>) {
        if Self::SCAN_OBJECTS_IMMEDIATELY {
            // We execute this `scan_objects_work` immediately.
            // This is expected to be a useful optimization because,
            // say for _pmd_ with 200M heap, we're likely to have 50000~60000 `ScanObjects` work packets
            // being dispatched (similar amount to `ProcessEdgesWork`).
            // Executing these work packets now can remarkably reduce the global synchronization time.
            work_packet.do_work(self.worker(), self.mmtk);
        } else {
            debug_assert!(self.bucket != WorkBucketStage::Unconstrained);
            self.mmtk.scheduler.work_buckets[self.bucket].add(work_packet);
        }
    }

    /// Create an object-scanning work packet to be used for this ProcessEdgesWork.
    ///
    /// `roots` indicates if we are creating a packet for root scanning.  It is only true when this
    /// method is called to handle `RootsWorkFactory::create_process_pinning_roots_work`.
    fn create_scan_work(&self, nodes: Vec<ObjectReference>) -> Self::ScanObjectsWorkType;

    /// Flush the nodes in ProcessEdgesBase, and create a ScanObjects work packet for it. If the node set is empty,
    /// this method will simply return with no work packet created.
    fn flush(&mut self) {
        let nodes = self.pop_nodes();
        if !nodes.is_empty() {
            self.start_or_dispatch_scan_work(self.create_scan_work(nodes));
        }
    }

    /// Process a slot, including loading the object reference from the memory slot,
    /// trace the object and store back the new object reference if necessary.
    fn process_slot(&mut self, slot: SlotOf<Self>) {
        let Some(object) = slot.load() else {
            // Skip slots that are not holding an object reference.
            return;
        };
        let new_object = self.trace_object(object);
        if Self::OVERWRITE_REFERENCE && new_object != object {
            slot.store(new_object);
        }
    }

    /// Process all the slots in the work packet.
    fn process_slots(&mut self) {
        probe!(mmtk, process_slots, self.slots.len(), self.is_roots());
        for i in 0..self.slots.len() {
            self.process_slot(self.slots[i])
        }
    }
}

impl<E: ProcessEdgesWork> GCWork<E::VM> for E {
    fn do_work(&mut self, worker: &mut GCWorker<E::VM>, _mmtk: &'static MMTK<E::VM>) {
        self.set_worker(worker);
        self.process_slots();
        if !self.nodes.is_empty() {
            self.flush();
        }
        #[cfg(feature = "sanity")]
        if self.roots && !_mmtk.is_in_sanity() {
            self.cache_roots_for_sanity_gc();
        }
        trace!("ProcessEdgesWork End");
    }
}

/// A general implementation of [`ProcessEdgesWork`] using SFT. A plan can always implement their
/// own [`ProcessEdgesWork`] instances. However, most plans can use this work packet for tracing amd
/// they do not need to provide a plan-specific trace object work packet. If they choose to use this
/// type, they need to provide a correct implementation for some related methods (such as
/// `Space.set_copy_for_sft_trace()`, `SFT.sft_trace_object()`). Some plans are not using this type,
/// mostly due to more complex tracing. Either it is impossible to use this type, or there is
/// performance overheads for using this general trace type. In such cases, they implement their
/// specific [`ProcessEdgesWork`] instances.
// TODO: This is not used any more. Should we remove it?
pub struct SFTProcessEdges<VM: VMBinding> {
    pub base: ProcessEdgesBase<VM>,
}

impl<VM: VMBinding> ProcessEdgesWork for SFTProcessEdges<VM> {
    type VM = VM;
    type ScanObjectsWorkType = ScanObjects<Self>;

    fn new(
        slots: Vec<SlotOf<Self>>,
        roots: bool,
        mmtk: &'static MMTK<VM>,
        bucket: WorkBucketStage,
    ) -> Self {
        let base = ProcessEdgesBase::new(slots, roots, mmtk, bucket);
        Self { base }
    }

    fn trace_object(&mut self, object: ObjectReference) -> ObjectReference {
        use crate::policy::sft::GCWorkerMutRef;

        // Erase <VM> type parameter
        let worker = GCWorkerMutRef::new(self.worker());

        // Invoke trace object on sft
        let sft = unsafe { crate::mmtk::SFT_MAP.get_unchecked(object.to_raw_address()) };
        sft.sft_trace_object(&mut self.base.nodes, object, worker)
    }

    fn create_scan_work(&self, nodes: Vec<ObjectReference>) -> ScanObjects<Self> {
        ScanObjects::<Self>::new(nodes, false, self.bucket)
    }
}

/// An implementation of `RootsWorkFactory` that creates work packets based on `ProcessEdgesWork`
/// for handling roots.  The `DPE` and the `PPE` type parameters correspond to the
/// `DefaultProcessEdge` and the `PinningProcessEdges` type members of the [`GCWorkContext`] trait.
pub(crate) struct ProcessEdgesWorkRootsWorkFactory<
    VM: VMBinding,
    DPE: ProcessEdgesWork<VM = VM>,
    PPE: ProcessEdgesWork<VM = VM>,
> {
    mmtk: &'static MMTK<VM>,
    phantom: PhantomData<(DPE, PPE)>,
}

impl<VM: VMBinding, DPE: ProcessEdgesWork<VM = VM>, PPE: ProcessEdgesWork<VM = VM>> Clone
    for ProcessEdgesWorkRootsWorkFactory<VM, DPE, PPE>
{
    fn clone(&self) -> Self {
        Self {
            mmtk: self.mmtk,
            phantom: PhantomData,
        }
    }
}

/// For USDT tracepoints for roots.
/// Keep in sync with `tools/tracing/timeline/visualize.py`.
#[repr(usize)]
enum RootsKind {
    NORMAL = 0,
    PINNING = 1,
    TPINNING = 2,
}

impl<VM: VMBinding, DPE: ProcessEdgesWork<VM = VM>, PPE: ProcessEdgesWork<VM = VM>>
    RootsWorkFactory<VM::VMSlot> for ProcessEdgesWorkRootsWorkFactory<VM, DPE, PPE>
{
    fn create_process_roots_work(&mut self, slots: Vec<VM::VMSlot>) {
        // Note: We should use the same USDT name "mmtk:roots" for all the three kinds of roots. A
        // VM binding may not call all of the three methods in this impl. For example, the OpenJDK
        // binding only calls `create_process_roots_work`, and the Ruby binding only calls
        // `create_process_pinning_roots_work`. Because `ProcessEdgesWorkRootsWorkFactory<VM, DPE,
        // PPE>` is a generic type, the Rust compiler emits the function bodies on demand, so the
        // resulting machine code may not contain all three USDT trace points.  If they have
        // different names, and our `capture.bt` mentions all of them, `bpftrace` may complain that
        // it cannot find one or more of those USDT trace points in the binary.
        probe!(mmtk, roots, RootsKind::NORMAL, slots.len());
        crate::memory_manager::add_work_packet(
            self.mmtk,
            WorkBucketStage::Closure,
            DPE::new(slots, true, self.mmtk, WorkBucketStage::Closure),
        );
    }

    fn create_process_pinning_roots_work(&mut self, nodes: Vec<ObjectReference>) {
        probe!(mmtk, roots, RootsKind::PINNING, nodes.len());
        // Will process roots within the PinningRootsTrace bucket
        // And put work in the Closure bucket
        crate::memory_manager::add_work_packet(
            self.mmtk,
            WorkBucketStage::PinningRootsTrace,
            ProcessRootNode::<VM, PPE, DPE>::new(nodes, WorkBucketStage::Closure),
        );
    }

    fn create_process_tpinning_roots_work(&mut self, nodes: Vec<ObjectReference>) {
        probe!(mmtk, roots, RootsKind::TPINNING, nodes.len());
        crate::memory_manager::add_work_packet(
            self.mmtk,
            WorkBucketStage::TPinningClosure,
            ProcessRootNode::<VM, PPE, PPE>::new(nodes, WorkBucketStage::TPinningClosure),
        );
    }
}

impl<VM: VMBinding, DPE: ProcessEdgesWork<VM = VM>, PPE: ProcessEdgesWork<VM = VM>>
    ProcessEdgesWorkRootsWorkFactory<VM, DPE, PPE>
{
    fn new(mmtk: &'static MMTK<VM>) -> Self {
        Self {
            mmtk,
            phantom: PhantomData,
        }
    }
}

impl<VM: VMBinding> Deref for SFTProcessEdges<VM> {
    type Target = ProcessEdgesBase<VM>;
    fn deref(&self) -> &Self::Target {
        &self.base
    }
}

impl<VM: VMBinding> DerefMut for SFTProcessEdges<VM> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.base
    }
}

/// Trait for a work packet that scans objects
pub trait ScanObjectsWork<VM: VMBinding>: GCWork<VM> + Sized {
    /// The associated ProcessEdgesWork for processing the outgoing edges of the objects in this
    /// packet.
    type E: ProcessEdgesWork<VM = VM>;

    /// Called after each object is scanned.
    fn post_scan_object(&self, object: ObjectReference);

    /// Return the work bucket for this work packet and its derived work packets.
    fn get_bucket(&self) -> WorkBucketStage;

    /// The common code for ScanObjects and PlanScanObjects.
    fn do_work_common(
        &self,
        buffer: &[ObjectReference],
        worker: &mut GCWorker<<Self::E as ProcessEdgesWork>::VM>,
        mmtk: &'static MMTK<<Self::E as ProcessEdgesWork>::VM>,
    ) {
        let tls = worker.tls;

        let objects_to_scan = buffer;

        // Scan the objects in the list that supports slot-enququing.
        let mut scan_later = vec![];
        {
            let mut closure = ObjectsClosure::<Self::E>::new(worker, self.get_bucket());

            // For any object we need to scan, we count its live bytes.
            // Check the option outside the loop for better performance.
            if crate::util::rust_util::unlikely(*mmtk.get_options().count_live_bytes_in_gc) {
                // Borrow before the loop.
                let mut live_bytes_stats = closure.worker.shared.live_bytes_per_space.borrow_mut();
                for object in objects_to_scan.iter().copied() {
                    crate::scheduler::worker::GCWorkerShared::<VM>::increase_live_bytes(
                        &mut live_bytes_stats,
                        object,
                    );
                }
            }

            for object in objects_to_scan.iter().copied() {
                if <VM as VMBinding>::VMScanning::support_slot_enqueuing(tls, object) {
                    trace!("Scan object (slot) {}", object);
                    // If an object supports slot-enqueuing, we enqueue its slots.
                    <VM as VMBinding>::VMScanning::scan_object(tls, object, &mut closure);
                    self.post_scan_object(object);
                } else {
                    // If an object does not support slot-enqueuing, we have to use
                    // `Scanning::scan_object_and_trace_edges` and offload the job of updating the
                    // reference field to the VM.
                    //
                    // However, at this point, `closure` is borrowing `worker`.
                    // So we postpone the processing of objects that needs object enqueuing
                    scan_later.push(object);
                }
            }
        }

        let total_objects = objects_to_scan.len();
        let scan_and_trace = scan_later.len();
        probe!(mmtk, scan_objects, total_objects, scan_and_trace);

        // If any object does not support slot-enqueuing, we process them now.
        if !scan_later.is_empty() {
            let object_tracer_context = ProcessEdgesWorkTracerContext::<Self::E> {
                stage: self.get_bucket(),
                phantom_data: PhantomData,
            };

            object_tracer_context.with_tracer(worker, |object_tracer| {
                // Scan objects and trace their outgoing edges at the same time.
                for object in scan_later.iter().copied() {
                    trace!("Scan object (node) {}", object);
                    <VM as VMBinding>::VMScanning::scan_object_and_trace_edges(
                        tls,
                        object,
                        object_tracer,
                    );
                    self.post_scan_object(object);
                }
            });
        }
    }
}

/// Scan objects and enqueue the slots of the objects.  For objects that do not support
/// slot-enqueuing, this work packet also traces their outgoing edges directly.
///
/// This work packet does not execute policy-specific post-scanning hooks
/// (it won't call `post_scan_object()` in [`policy::gc_work::PolicyTraceObject`]).
/// It should be used only for policies that do not perform policy-specific actions when scanning
/// an object.
pub struct ScanObjects<Edges: ProcessEdgesWork> {
    buffer: Vec<ObjectReference>,
    #[allow(unused)]
    concurrent: bool,
    phantom: PhantomData<Edges>,
    bucket: WorkBucketStage,
}

impl<Edges: ProcessEdgesWork> ScanObjects<Edges> {
    pub fn new(buffer: Vec<ObjectReference>, concurrent: bool, bucket: WorkBucketStage) -> Self {
        Self {
            buffer,
            concurrent,
            phantom: PhantomData,
            bucket,
        }
    }
}

impl<VM: VMBinding, E: ProcessEdgesWork<VM = VM>> ScanObjectsWork<VM> for ScanObjects<E> {
    type E = E;

    fn get_bucket(&self) -> WorkBucketStage {
        self.bucket
    }

    fn post_scan_object(&self, _object: ObjectReference) {
        // Do nothing.
    }
}

impl<E: ProcessEdgesWork> GCWork<E::VM> for ScanObjects<E> {
    fn do_work(&mut self, worker: &mut GCWorker<E::VM>, mmtk: &'static MMTK<E::VM>) {
        trace!("ScanObjects");
        self.do_work_common(&self.buffer, worker, mmtk);
        trace!("ScanObjects End");
    }
}

use crate::mmtk::MMTK;
use crate::plan::Plan;
use crate::plan::PlanTraceObject;
use crate::policy::gc_work::TraceKind;

/// This provides an implementation of [`crate::scheduler::gc_work::ProcessEdgesWork`]. A plan that implements
/// `PlanTraceObject` can use this work packet for tracing objects.
pub struct PlanProcessEdges<
    VM: VMBinding,
    P: Plan<VM = VM> + PlanTraceObject<VM>,
    const KIND: TraceKind,
> {
    plan: &'static P,
    base: ProcessEdgesBase<VM>,
}

impl<VM: VMBinding, P: PlanTraceObject<VM> + Plan<VM = VM>, const KIND: TraceKind> ProcessEdgesWork
    for PlanProcessEdges<VM, P, KIND>
{
    type VM = VM;
    type ScanObjectsWorkType = PlanScanObjects<Self, P>;

    fn new(
        slots: Vec<SlotOf<Self>>,
        roots: bool,
        mmtk: &'static MMTK<VM>,
        bucket: WorkBucketStage,
    ) -> Self {
        let base = ProcessEdgesBase::new(slots, roots, mmtk, bucket);
        let plan = base.plan().downcast_ref::<P>().unwrap();
        Self { plan, base }
    }

    fn create_scan_work(&self, nodes: Vec<ObjectReference>) -> Self::ScanObjectsWorkType {
        PlanScanObjects::<Self, P>::new(self.plan, nodes, false, self.bucket)
    }

    fn trace_object(&mut self, object: ObjectReference) -> ObjectReference {
        // We cannot borrow `self` twice in a call, so we extract `worker` as a local variable.
        let worker = self.worker();
        self.plan
            .trace_object::<VectorObjectQueue, KIND>(&mut self.base.nodes, object, worker)
    }

    fn process_slot(&mut self, slot: SlotOf<Self>) {
        let Some(object) = slot.load() else {
            // Skip slots that are not holding an object reference.
            return;
        };
        let new_object = self.trace_object(object);
        if P::may_move_objects::<KIND>() && new_object != object {
            slot.store(new_object);
        }
    }
}

// Impl Deref/DerefMut to ProcessEdgesBase for PlanProcessEdges
impl<VM: VMBinding, P: PlanTraceObject<VM> + Plan<VM = VM>, const KIND: TraceKind> Deref
    for PlanProcessEdges<VM, P, KIND>
{
    type Target = ProcessEdgesBase<VM>;
    fn deref(&self) -> &Self::Target {
        &self.base
    }
}

impl<VM: VMBinding, P: PlanTraceObject<VM> + Plan<VM = VM>, const KIND: TraceKind> DerefMut
    for PlanProcessEdges<VM, P, KIND>
{
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.base
    }
}

/// This is an alternative to `ScanObjects` that calls the `post_scan_object` of the policy
/// selected by the plan.  It is applicable to plans that derive `PlanTraceObject`.
pub struct PlanScanObjects<E: ProcessEdgesWork, P: Plan<VM = E::VM> + PlanTraceObject<E::VM>> {
    plan: &'static P,
    buffer: Vec<ObjectReference>,
    #[allow(dead_code)]
    concurrent: bool,
    phantom: PhantomData<E>,
    bucket: WorkBucketStage,
}

impl<E: ProcessEdgesWork, P: Plan<VM = E::VM> + PlanTraceObject<E::VM>> PlanScanObjects<E, P> {
    pub fn new(
        plan: &'static P,
        buffer: Vec<ObjectReference>,
        concurrent: bool,
        bucket: WorkBucketStage,
    ) -> Self {
        Self {
            plan,
            buffer,
            concurrent,
            phantom: PhantomData,
            bucket,
        }
    }
}

impl<E: ProcessEdgesWork, P: Plan<VM = E::VM> + PlanTraceObject<E::VM>> ScanObjectsWork<E::VM>
    for PlanScanObjects<E, P>
{
    type E = E;

    fn get_bucket(&self) -> WorkBucketStage {
        self.bucket
    }

    fn post_scan_object(&self, object: ObjectReference) {
        self.plan.post_scan_object(object);
    }
}

impl<E: ProcessEdgesWork, P: Plan<VM = E::VM> + PlanTraceObject<E::VM>> GCWork<E::VM>
    for PlanScanObjects<E, P>
{
    fn do_work(&mut self, worker: &mut GCWorker<E::VM>, mmtk: &'static MMTK<E::VM>) {
        trace!("PlanScanObjects");
        self.do_work_common(&self.buffer, worker, mmtk);
        trace!("PlanScanObjects End");
    }
}

/// This work packet processes pinning roots.
///
/// The `roots` member holds a list of `ObjectReference` to objects directly pointed by roots.
/// These objects will be traced using `R2OPE` (Root-to-Object Process Edges).
///
/// After that, it will create work packets for tracing their children.  Those work packets (and
/// the work packets further created by them) will use `O2OPE` (Object-to-Object Process Edges) as
/// their `ProcessEdgesWork` implementations.
///
/// Because `roots` are pinning roots, `R2OPE` must be a `ProcessEdgesWork` that never moves any
/// object.
///
/// The choice of `O2OPE` determines whether the `roots` are transitively pinning or not.
///
/// -   If `O2OPE` is set to a `ProcessEdgesWork` that never moves objects, all descendents of
///     `roots` will not be moved in this GC.  That implements transitive pinning roots.
/// -   If `O2OPE` may move objects, then this `ProcessRootsNode<VM, R2OPE, O2OPE>` work packet
///     will only pin the objects in `roots` (because `R2OPE` must not move objects anyway), but
///     not their descendents.
pub(crate) struct ProcessRootNode<
    VM: VMBinding,
    R2OPE: ProcessEdgesWork<VM = VM>,
    O2OPE: ProcessEdgesWork<VM = VM>,
> {
    phantom: PhantomData<(VM, R2OPE, O2OPE)>,
    roots: Vec<ObjectReference>,
    bucket: WorkBucketStage,
}

impl<VM: VMBinding, R2OPE: ProcessEdgesWork<VM = VM>, O2OPE: ProcessEdgesWork<VM = VM>>
    ProcessRootNode<VM, R2OPE, O2OPE>
{
    pub fn new(nodes: Vec<ObjectReference>, bucket: WorkBucketStage) -> Self {
        Self {
            phantom: PhantomData,
            roots: nodes,
            bucket,
        }
    }
}

impl<VM: VMBinding, R2OPE: ProcessEdgesWork<VM = VM>, O2OPE: ProcessEdgesWork<VM = VM>> GCWork<VM>
    for ProcessRootNode<VM, R2OPE, O2OPE>
{
    fn do_work(&mut self, worker: &mut GCWorker<VM>, mmtk: &'static MMTK<VM>) {
        trace!("ProcessRootNode");

        #[cfg(feature = "sanity")]
        {
            if !mmtk.is_in_sanity() {
                mmtk.sanity_checker
                    .lock()
                    .unwrap()
                    .add_root_nodes(self.roots.clone());
            }
        }

        // This step conceptually traces the edges from root slots to the objects they point to.
        // However, VMs that deliver root objects instead of root slots are incapable of updating
        // root slots.  Therefore, we call `trace_object` on those objects, and assert the GC
        // doesn't move those objects because we cannot store the updated references back to the
        // slots.
        //
        // The `scanned_root_objects` variable will hold those root objects which are traced for the
        // first time.  We will create a work packet for scanning those roots.
        let scanned_root_objects = {
            // We create an instance of E to use its `trace_object` method and its object queue.
            let mut process_edges_work =
                R2OPE::new(vec![], true, mmtk, WorkBucketStage::PinningRootsTrace);
            process_edges_work.set_worker(worker);

            for object in self.roots.iter().copied() {
                let new_object = process_edges_work.trace_object(object);
                debug_assert_eq!(
                    object, new_object,
                    "Object moved while tracing root unmovable root object: {} -> {}",
                    object, new_object
                );
            }

            // This contains root objects that are visited the first time.
            // It is sufficient to only scan these objects.
            process_edges_work.nodes.take()
        };

        let process_edges_work = O2OPE::new(vec![], false, mmtk, self.bucket);
        let work = process_edges_work.create_scan_work(scanned_root_objects);
        crate::memory_manager::add_work_packet(mmtk, self.bucket, work);

        trace!("ProcessRootNode End");
    }
}

/// A `ProcessEdgesWork` type that panics when any of its method is used.
/// This is currently used for plans that do not support transitively pinning.
#[derive(Default)]
pub struct UnsupportedProcessEdges<VM: VMBinding> {
    phantom: PhantomData<VM>,
}

impl<VM: VMBinding> Deref for UnsupportedProcessEdges<VM> {
    type Target = ProcessEdgesBase<VM>;
    fn deref(&self) -> &Self::Target {
        panic!("unsupported!")
    }
}

impl<VM: VMBinding> DerefMut for UnsupportedProcessEdges<VM> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        panic!("unsupported!")
    }
}

impl<VM: VMBinding> ProcessEdgesWork for UnsupportedProcessEdges<VM> {
    type VM = VM;

    type ScanObjectsWorkType = ScanObjects<Self>;

    fn new(
        _slots: Vec<SlotOf<Self>>,
        _roots: bool,
        _mmtk: &'static MMTK<Self::VM>,
        _bucket: WorkBucketStage,
    ) -> Self {
        panic!("unsupported!")
    }

    fn trace_object(&mut self, _object: ObjectReference) -> ObjectReference {
        panic!("unsupported!")
    }

    fn create_scan_work(&self, _nodes: Vec<ObjectReference>) -> Self::ScanObjectsWorkType {
        panic!("unsupported!")
    }
}