mmtk/scheduler/gc_work.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
use super::work_bucket::WorkBucketStage;
use super::*;
use crate::global_state::GcStatus;
use crate::plan::ObjectsClosure;
use crate::plan::VectorObjectQueue;
use crate::util::*;
use crate::vm::slot::Slot;
use crate::vm::*;
use crate::*;
use std::marker::PhantomData;
use std::ops::{Deref, DerefMut};
pub struct ScheduleCollection;
impl<VM: VMBinding> GCWork<VM> for ScheduleCollection {
fn do_work(&mut self, worker: &mut GCWorker<VM>, mmtk: &'static MMTK<VM>) {
// Tell GC trigger that GC started.
mmtk.gc_trigger.policy.on_gc_start(mmtk);
// Determine collection kind
let is_emergency = mmtk.state.set_collection_kind(
mmtk.get_plan().last_collection_was_exhaustive(),
mmtk.gc_trigger.policy.can_heap_size_grow(),
);
if is_emergency {
mmtk.get_plan().notify_emergency_collection();
}
// Set to GcPrepare
mmtk.set_gc_status(GcStatus::GcPrepare);
// Let the plan to schedule collection work
mmtk.get_plan().schedule_collection(worker.scheduler());
}
}
/// The global GC Preparation Work
/// This work packet invokes prepare() for the plan (which will invoke prepare() for each space), and
/// pushes work packets for preparing mutators and collectors.
/// We should only have one such work packet per GC, before any actual GC work starts.
/// We assume this work packet is the only running work packet that accesses plan, and there should
/// be no other concurrent work packet that accesses plan (read or write). Otherwise, there may
/// be a race condition.
pub struct Prepare<C: GCWorkContext> {
pub plan: *const C::PlanType,
}
unsafe impl<C: GCWorkContext> Send for Prepare<C> {}
impl<C: GCWorkContext> Prepare<C> {
pub fn new(plan: *const C::PlanType) -> Self {
Self { plan }
}
}
impl<C: GCWorkContext> GCWork<C::VM> for Prepare<C> {
fn do_work(&mut self, worker: &mut GCWorker<C::VM>, mmtk: &'static MMTK<C::VM>) {
trace!("Prepare Global");
// We assume this is the only running work packet that accesses plan at the point of execution
let plan_mut: &mut C::PlanType = unsafe { &mut *(self.plan as *const _ as *mut _) };
plan_mut.prepare(worker.tls);
if plan_mut.constraints().needs_prepare_mutator {
let prepare_mutator_packets = <C::VM as VMBinding>::VMActivePlan::mutators()
.map(|mutator| Box::new(PrepareMutator::<C::VM>::new(mutator)) as _)
.collect::<Vec<_>>();
// Just in case the VM binding is inconsistent about the number of mutators and the actual mutator list.
debug_assert_eq!(
prepare_mutator_packets.len(),
<C::VM as VMBinding>::VMActivePlan::number_of_mutators()
);
mmtk.scheduler.work_buckets[WorkBucketStage::Prepare].bulk_add(prepare_mutator_packets);
}
for w in &mmtk.scheduler.worker_group.workers_shared {
let result = w.designated_work.push(Box::new(PrepareCollector));
debug_assert!(result.is_ok());
}
}
}
/// The mutator GC Preparation Work
pub struct PrepareMutator<VM: VMBinding> {
// The mutator reference has static lifetime.
// It is safe because the actual lifetime of this work-packet will not exceed the lifetime of a GC.
pub mutator: &'static mut Mutator<VM>,
}
impl<VM: VMBinding> PrepareMutator<VM> {
pub fn new(mutator: &'static mut Mutator<VM>) -> Self {
Self { mutator }
}
}
impl<VM: VMBinding> GCWork<VM> for PrepareMutator<VM> {
fn do_work(&mut self, worker: &mut GCWorker<VM>, _mmtk: &'static MMTK<VM>) {
trace!("Prepare Mutator");
self.mutator.prepare(worker.tls);
}
}
/// The collector GC Preparation Work
#[derive(Default)]
pub struct PrepareCollector;
impl<VM: VMBinding> GCWork<VM> for PrepareCollector {
fn do_work(&mut self, worker: &mut GCWorker<VM>, mmtk: &'static MMTK<VM>) {
trace!("Prepare Collector");
worker.get_copy_context_mut().prepare();
mmtk.get_plan().prepare_worker(worker);
}
}
/// The global GC release Work
/// This work packet invokes release() for the plan (which will invoke release() for each space), and
/// pushes work packets for releasing mutators and collectors.
/// We should only have one such work packet per GC, after all actual GC work ends.
/// We assume this work packet is the only running work packet that accesses plan, and there should
/// be no other concurrent work packet that accesses plan (read or write). Otherwise, there may
/// be a race condition.
pub struct Release<C: GCWorkContext> {
pub plan: *const C::PlanType,
}
impl<C: GCWorkContext> Release<C> {
pub fn new(plan: *const C::PlanType) -> Self {
Self { plan }
}
}
unsafe impl<C: GCWorkContext> Send for Release<C> {}
impl<C: GCWorkContext + 'static> GCWork<C::VM> for Release<C> {
fn do_work(&mut self, worker: &mut GCWorker<C::VM>, mmtk: &'static MMTK<C::VM>) {
trace!("Release Global");
mmtk.gc_trigger.policy.on_gc_release(mmtk);
// We assume this is the only running work packet that accesses plan at the point of execution
let plan_mut: &mut C::PlanType = unsafe { &mut *(self.plan as *const _ as *mut _) };
plan_mut.release(worker.tls);
let release_mutator_packets = <C::VM as VMBinding>::VMActivePlan::mutators()
.map(|mutator| Box::new(ReleaseMutator::<C::VM>::new(mutator)) as _)
.collect::<Vec<_>>();
// Just in case the VM binding is inconsistent about the number of mutators and the actual mutator list.
debug_assert_eq!(
release_mutator_packets.len(),
<C::VM as VMBinding>::VMActivePlan::number_of_mutators()
);
mmtk.scheduler.work_buckets[WorkBucketStage::Release].bulk_add(release_mutator_packets);
for w in &mmtk.scheduler.worker_group.workers_shared {
let result = w.designated_work.push(Box::new(ReleaseCollector));
debug_assert!(result.is_ok());
}
if *mmtk.get_options().count_live_bytes_in_gc {
let live_bytes = mmtk
.scheduler
.worker_group
.get_and_clear_worker_live_bytes();
*mmtk.state.live_bytes_in_last_gc.borrow_mut() =
mmtk.aggregate_live_bytes_in_last_gc(live_bytes);
}
}
}
/// The mutator release Work
pub struct ReleaseMutator<VM: VMBinding> {
// The mutator reference has static lifetime.
// It is safe because the actual lifetime of this work-packet will not exceed the lifetime of a GC.
pub mutator: &'static mut Mutator<VM>,
}
impl<VM: VMBinding> ReleaseMutator<VM> {
pub fn new(mutator: &'static mut Mutator<VM>) -> Self {
Self { mutator }
}
}
impl<VM: VMBinding> GCWork<VM> for ReleaseMutator<VM> {
fn do_work(&mut self, worker: &mut GCWorker<VM>, _mmtk: &'static MMTK<VM>) {
trace!("Release Mutator");
self.mutator.release(worker.tls);
}
}
/// The collector release Work
#[derive(Default)]
pub struct ReleaseCollector;
impl<VM: VMBinding> GCWork<VM> for ReleaseCollector {
fn do_work(&mut self, worker: &mut GCWorker<VM>, _mmtk: &'static MMTK<VM>) {
trace!("Release Collector");
worker.get_copy_context_mut().release();
}
}
/// Stop all mutators
///
/// TODO: Smaller work granularity
#[derive(Default)]
pub struct StopMutators<C: GCWorkContext>(PhantomData<C>);
impl<C: GCWorkContext> StopMutators<C> {
pub fn new() -> Self {
Self(PhantomData)
}
}
impl<C: GCWorkContext> GCWork<C::VM> for StopMutators<C> {
fn do_work(&mut self, worker: &mut GCWorker<C::VM>, mmtk: &'static MMTK<C::VM>) {
trace!("stop_all_mutators start");
mmtk.state.prepare_for_stack_scanning();
<C::VM as VMBinding>::VMCollection::stop_all_mutators(worker.tls, |mutator| {
// TODO: The stack scanning work won't start immediately, as the `Prepare` bucket is not opened yet (the bucket is opened in notify_mutators_paused).
// Should we push to Unconstrained instead?
mmtk.scheduler.work_buckets[WorkBucketStage::Prepare]
.add(ScanMutatorRoots::<C>(mutator));
});
trace!("stop_all_mutators end");
mmtk.scheduler.notify_mutators_paused(mmtk);
mmtk.scheduler.work_buckets[WorkBucketStage::Prepare].add(ScanVMSpecificRoots::<C>::new());
}
}
/// This implements `ObjectTracer` by forwarding the `trace_object` calls to the wrapped
/// `ProcessEdgesWork` instance.
pub(crate) struct ProcessEdgesWorkTracer<E: ProcessEdgesWork> {
process_edges_work: E,
stage: WorkBucketStage,
}
impl<E: ProcessEdgesWork> ObjectTracer for ProcessEdgesWorkTracer<E> {
/// Forward the `trace_object` call to the underlying `ProcessEdgesWork`,
/// and flush as soon as the underlying buffer of `process_edges_work` is full.
fn trace_object(&mut self, object: ObjectReference) -> ObjectReference {
let result = self.process_edges_work.trace_object(object);
self.flush_if_full();
result
}
}
impl<E: ProcessEdgesWork> ProcessEdgesWorkTracer<E> {
fn flush_if_full(&mut self) {
if self.process_edges_work.nodes.is_full() {
self.flush();
}
}
pub fn flush_if_not_empty(&mut self) {
if !self.process_edges_work.nodes.is_empty() {
self.flush();
}
}
fn flush(&mut self) {
let next_nodes = self.process_edges_work.pop_nodes();
assert!(!next_nodes.is_empty());
let work_packet = self.process_edges_work.create_scan_work(next_nodes);
let worker = self.process_edges_work.worker();
worker.scheduler().work_buckets[self.stage].add(work_packet);
}
}
/// This type implements `ObjectTracerContext` by creating a temporary `ProcessEdgesWork` during
/// the call to `with_tracer`, making use of its `trace_object` method. It then creates work
/// packets using the methods of the `ProcessEdgesWork` and add the work packet into the given
/// `stage`.
pub(crate) struct ProcessEdgesWorkTracerContext<E: ProcessEdgesWork> {
stage: WorkBucketStage,
phantom_data: PhantomData<E>,
}
impl<E: ProcessEdgesWork> Clone for ProcessEdgesWorkTracerContext<E> {
fn clone(&self) -> Self {
Self { ..*self }
}
}
impl<E: ProcessEdgesWork> ObjectTracerContext<E::VM> for ProcessEdgesWorkTracerContext<E> {
type TracerType = ProcessEdgesWorkTracer<E>;
fn with_tracer<R, F>(&self, worker: &mut GCWorker<E::VM>, func: F) -> R
where
F: FnOnce(&mut Self::TracerType) -> R,
{
let mmtk = worker.mmtk;
// Prepare the underlying ProcessEdgesWork
let mut process_edges_work = E::new(vec![], false, mmtk, self.stage);
// FIXME: This line allows us to omit the borrowing lifetime of worker.
// We should refactor ProcessEdgesWork so that it uses `worker` locally, not as a member.
process_edges_work.set_worker(worker);
// Cretae the tracer.
let mut tracer = ProcessEdgesWorkTracer {
process_edges_work,
stage: self.stage,
};
// The caller can use the tracer here.
let result = func(&mut tracer);
// Flush the queued nodes.
tracer.flush_if_not_empty();
result
}
}
/// Delegate to the VM binding for weak reference processing.
///
/// Some VMs (e.g. v8) do not have a Java-like global weak reference storage, and the
/// processing of those weakrefs may be more complex. For such case, we delegate to the
/// VM binding to process weak references.
///
/// NOTE: This will replace `{Soft,Weak,Phantom}RefProcessing` and `Finalization` in the future.
pub struct VMProcessWeakRefs<E: ProcessEdgesWork> {
phantom_data: PhantomData<E>,
}
impl<E: ProcessEdgesWork> VMProcessWeakRefs<E> {
pub fn new() -> Self {
Self {
phantom_data: PhantomData,
}
}
}
impl<E: ProcessEdgesWork> GCWork<E::VM> for VMProcessWeakRefs<E> {
fn do_work(&mut self, worker: &mut GCWorker<E::VM>, _mmtk: &'static MMTK<E::VM>) {
trace!("VMProcessWeakRefs");
let stage = WorkBucketStage::VMRefClosure;
let need_to_repeat = {
let tracer_factory = ProcessEdgesWorkTracerContext::<E> {
stage,
phantom_data: PhantomData,
};
<E::VM as VMBinding>::VMScanning::process_weak_refs(worker, tracer_factory)
};
if need_to_repeat {
// Schedule Self as the new sentinel so we'll call `process_weak_refs` again after the
// current transitive closure.
let new_self = Box::new(Self::new());
worker.scheduler().work_buckets[stage].set_sentinel(new_self);
}
}
}
/// Delegate to the VM binding for forwarding weak references.
///
/// Some VMs (e.g. v8) do not have a Java-like global weak reference storage, and the
/// processing of those weakrefs may be more complex. For such case, we delegate to the
/// VM binding to process weak references.
///
/// NOTE: This will replace `RefForwarding` and `ForwardFinalization` in the future.
pub struct VMForwardWeakRefs<E: ProcessEdgesWork> {
phantom_data: PhantomData<E>,
}
impl<E: ProcessEdgesWork> VMForwardWeakRefs<E> {
pub fn new() -> Self {
Self {
phantom_data: PhantomData,
}
}
}
impl<E: ProcessEdgesWork> GCWork<E::VM> for VMForwardWeakRefs<E> {
fn do_work(&mut self, worker: &mut GCWorker<E::VM>, _mmtk: &'static MMTK<E::VM>) {
trace!("VMForwardWeakRefs");
let stage = WorkBucketStage::VMRefForwarding;
let tracer_factory = ProcessEdgesWorkTracerContext::<E> {
stage,
phantom_data: PhantomData,
};
<E::VM as VMBinding>::VMScanning::forward_weak_refs(worker, tracer_factory)
}
}
/// This work packet calls `Collection::post_forwarding`.
///
/// NOTE: This will replace `RefEnqueue` in the future.
///
/// NOTE: Although this work packet runs in parallel with the `Release` work packet, it does not
/// access the `Plan` instance.
#[derive(Default)]
pub struct VMPostForwarding<VM: VMBinding> {
phantom_data: PhantomData<VM>,
}
impl<VM: VMBinding> GCWork<VM> for VMPostForwarding<VM> {
fn do_work(&mut self, worker: &mut GCWorker<VM>, _mmtk: &'static MMTK<VM>) {
trace!("VMPostForwarding start");
<VM as VMBinding>::VMCollection::post_forwarding(worker.tls);
trace!("VMPostForwarding end");
}
}
pub struct ScanMutatorRoots<C: GCWorkContext>(pub &'static mut Mutator<C::VM>);
impl<C: GCWorkContext> GCWork<C::VM> for ScanMutatorRoots<C> {
fn do_work(&mut self, worker: &mut GCWorker<C::VM>, mmtk: &'static MMTK<C::VM>) {
trace!("ScanMutatorRoots for mutator {:?}", self.0.get_tls());
let mutators = <C::VM as VMBinding>::VMActivePlan::number_of_mutators();
let factory = ProcessEdgesWorkRootsWorkFactory::<
C::VM,
C::DefaultProcessEdges,
C::PinningProcessEdges,
>::new(mmtk);
<C::VM as VMBinding>::VMScanning::scan_roots_in_mutator_thread(
worker.tls,
unsafe { &mut *(self.0 as *mut _) },
factory,
);
self.0.flush();
if mmtk.state.inform_stack_scanned(mutators) {
<C::VM as VMBinding>::VMScanning::notify_initial_thread_scan_complete(
false, worker.tls,
);
mmtk.set_gc_status(GcStatus::GcProper);
}
}
}
#[derive(Default)]
pub struct ScanVMSpecificRoots<C: GCWorkContext>(PhantomData<C>);
impl<C: GCWorkContext> ScanVMSpecificRoots<C> {
pub fn new() -> Self {
Self(PhantomData)
}
}
impl<C: GCWorkContext> GCWork<C::VM> for ScanVMSpecificRoots<C> {
fn do_work(&mut self, worker: &mut GCWorker<C::VM>, mmtk: &'static MMTK<C::VM>) {
trace!("ScanStaticRoots");
let factory = ProcessEdgesWorkRootsWorkFactory::<
C::VM,
C::DefaultProcessEdges,
C::PinningProcessEdges,
>::new(mmtk);
<C::VM as VMBinding>::VMScanning::scan_vm_specific_roots(worker.tls, factory);
}
}
pub struct ProcessEdgesBase<VM: VMBinding> {
pub slots: Vec<VM::VMSlot>,
pub nodes: VectorObjectQueue,
mmtk: &'static MMTK<VM>,
// Use raw pointer for fast pointer dereferencing, instead of using `Option<&'static mut GCWorker<E::VM>>`.
// Because a copying gc will dereference this pointer at least once for every object copy.
worker: *mut GCWorker<VM>,
pub roots: bool,
pub bucket: WorkBucketStage,
}
unsafe impl<VM: VMBinding> Send for ProcessEdgesBase<VM> {}
impl<VM: VMBinding> ProcessEdgesBase<VM> {
// Requires an MMTk reference. Each plan-specific type that uses ProcessEdgesBase can get a static plan reference
// at creation. This avoids overhead for dynamic dispatch or downcasting plan for each object traced.
pub fn new(
slots: Vec<VM::VMSlot>,
roots: bool,
mmtk: &'static MMTK<VM>,
bucket: WorkBucketStage,
) -> Self {
#[cfg(feature = "extreme_assertions")]
if crate::util::slot_logger::should_check_duplicate_slots(mmtk.get_plan()) {
for slot in &slots {
// log slot, panic if already logged
mmtk.slot_logger.log_slot(*slot);
}
}
Self {
slots,
nodes: VectorObjectQueue::new(),
mmtk,
worker: std::ptr::null_mut(),
roots,
bucket,
}
}
pub fn set_worker(&mut self, worker: &mut GCWorker<VM>) {
self.worker = worker;
}
pub fn worker(&self) -> &'static mut GCWorker<VM> {
unsafe { &mut *self.worker }
}
pub fn mmtk(&self) -> &'static MMTK<VM> {
self.mmtk
}
pub fn plan(&self) -> &'static dyn Plan<VM = VM> {
self.mmtk.get_plan()
}
/// Pop all nodes from nodes, and clear nodes to an empty vector.
pub fn pop_nodes(&mut self) -> Vec<ObjectReference> {
self.nodes.take()
}
pub fn is_roots(&self) -> bool {
self.roots
}
}
/// A short-hand for `<E::VM as VMBinding>::VMSlot`.
pub type SlotOf<E> = <<E as ProcessEdgesWork>::VM as VMBinding>::VMSlot;
/// An abstract trait for work packets that process object graph edges. Its method
/// [`ProcessEdgesWork::trace_object`] traces an object and, upon first visit, enqueues it into an
/// internal queue inside the `ProcessEdgesWork` instance. Each implementation of this trait
/// implement `trace_object` differently. During [`Plan::schedule_collection`], plans select
/// (usually via `GCWorkContext`) specialized implementations of this trait to be used during each
/// trace according the nature of each trace, such as whether it is a nursery collection, whether it
/// is a defrag collection, whether it pins objects, etc.
///
/// This trait was originally designed for work packets that process object graph edges represented
/// as slots. The constructor [`ProcessEdgesWork::new`] takes a vector of slots, and the created
/// work packet will trace the objects pointed by the object reference in each slot using the
/// `trace_object` method, and update the slot if the GC moves the target object when tracing.
///
/// This trait can also be used merely as a provider of the `trace_object` method by giving it an
/// empty vector of slots. This is useful for node-enqueuing tracing
/// ([`Scanning::scan_object_and_trace_edges`]) as well as weak reference processing
/// ([`Scanning::process_weak_refs`] as well as `ReferenceProcessor` and `FinalizableProcessor`).
/// In those cases, the caller passes the reference to the target object to `trace_object`, an the
/// caller is responsible for updating the slots according the return value of `trace_object`.
///
/// TODO: We should refactor this trait to decouple it from slots. See:
/// <https://github.com/mmtk/mmtk-core/issues/599>
pub trait ProcessEdgesWork:
Send + 'static + Sized + DerefMut + Deref<Target = ProcessEdgesBase<Self::VM>>
{
/// The associate type for the VM.
type VM: VMBinding;
/// The work packet type for scanning objects when using this ProcessEdgesWork.
type ScanObjectsWorkType: ScanObjectsWork<Self::VM>;
/// The maximum number of slots that should be put to one of this work packets.
/// The caller who creates a work packet of this trait should be responsible to
/// comply with this capacity.
/// Higher capacity means the packet will take longer to finish, and may lead to
/// bad load balancing. On the other hand, lower capacity would lead to higher cost
/// on scheduling many small work packets. It is important to find a proper capacity.
const CAPACITY: usize = 4096;
/// Do we update object reference? This has to be true for a moving GC.
const OVERWRITE_REFERENCE: bool = true;
/// If true, we do object scanning in this work packet with the same worker without scheduling overhead.
/// If false, we will add object scanning work packets to the global queue and allow other workers to work on it.
const SCAN_OBJECTS_IMMEDIATELY: bool = true;
/// Create a [`ProcessEdgesWork`].
///
/// Arguments:
/// * `slots`: a vector of slots.
/// * `roots`: are the objects root reachable objects?
/// * `mmtk`: a reference to the MMTK instance.
/// * `bucket`: which work bucket this packet belongs to. Further work generated from this packet will also be put to the same bucket.
fn new(
slots: Vec<SlotOf<Self>>,
roots: bool,
mmtk: &'static MMTK<Self::VM>,
bucket: WorkBucketStage,
) -> Self;
/// Trace an MMTk object. The implementation should forward this call to the policy-specific
/// `trace_object()` methods, depending on which space this object is in.
/// If the object is not in any MMTk space, the implementation should forward the call to
/// `ActivePlan::vm_trace_object()` to let the binding handle the tracing.
fn trace_object(&mut self, object: ObjectReference) -> ObjectReference;
/// If the work includes roots, we will store the roots somewhere so for sanity GC, we can do another
/// transitive closure from the roots.
#[cfg(feature = "sanity")]
fn cache_roots_for_sanity_gc(&mut self) {
assert!(self.roots);
self.mmtk()
.sanity_checker
.lock()
.unwrap()
.add_root_slots(self.slots.clone());
}
/// Start the a scan work packet. If SCAN_OBJECTS_IMMEDIATELY, the work packet will be executed immediately, in this method.
/// Otherwise, the work packet will be added the Closure work bucket and will be dispatched later by the scheduler.
fn start_or_dispatch_scan_work(&mut self, mut work_packet: impl GCWork<Self::VM>) {
if Self::SCAN_OBJECTS_IMMEDIATELY {
// We execute this `scan_objects_work` immediately.
// This is expected to be a useful optimization because,
// say for _pmd_ with 200M heap, we're likely to have 50000~60000 `ScanObjects` work packets
// being dispatched (similar amount to `ProcessEdgesWork`).
// Executing these work packets now can remarkably reduce the global synchronization time.
work_packet.do_work(self.worker(), self.mmtk);
} else {
debug_assert!(self.bucket != WorkBucketStage::Unconstrained);
self.mmtk.scheduler.work_buckets[self.bucket].add(work_packet);
}
}
/// Create an object-scanning work packet to be used for this ProcessEdgesWork.
///
/// `roots` indicates if we are creating a packet for root scanning. It is only true when this
/// method is called to handle `RootsWorkFactory::create_process_pinning_roots_work`.
fn create_scan_work(&self, nodes: Vec<ObjectReference>) -> Self::ScanObjectsWorkType;
/// Flush the nodes in ProcessEdgesBase, and create a ScanObjects work packet for it. If the node set is empty,
/// this method will simply return with no work packet created.
fn flush(&mut self) {
let nodes = self.pop_nodes();
if !nodes.is_empty() {
self.start_or_dispatch_scan_work(self.create_scan_work(nodes));
}
}
/// Process a slot, including loading the object reference from the memory slot,
/// trace the object and store back the new object reference if necessary.
fn process_slot(&mut self, slot: SlotOf<Self>) {
let Some(object) = slot.load() else {
// Skip slots that are not holding an object reference.
return;
};
let new_object = self.trace_object(object);
if Self::OVERWRITE_REFERENCE && new_object != object {
slot.store(new_object);
}
}
/// Process all the slots in the work packet.
fn process_slots(&mut self) {
probe!(mmtk, process_slots, self.slots.len(), self.is_roots());
for i in 0..self.slots.len() {
self.process_slot(self.slots[i])
}
}
}
impl<E: ProcessEdgesWork> GCWork<E::VM> for E {
fn do_work(&mut self, worker: &mut GCWorker<E::VM>, _mmtk: &'static MMTK<E::VM>) {
self.set_worker(worker);
self.process_slots();
if !self.nodes.is_empty() {
self.flush();
}
#[cfg(feature = "sanity")]
if self.roots && !_mmtk.is_in_sanity() {
self.cache_roots_for_sanity_gc();
}
trace!("ProcessEdgesWork End");
}
}
/// A general implementation of [`ProcessEdgesWork`] using SFT. A plan can always implement their
/// own [`ProcessEdgesWork`] instances. However, most plans can use this work packet for tracing amd
/// they do not need to provide a plan-specific trace object work packet. If they choose to use this
/// type, they need to provide a correct implementation for some related methods (such as
/// `Space.set_copy_for_sft_trace()`, `SFT.sft_trace_object()`). Some plans are not using this type,
/// mostly due to more complex tracing. Either it is impossible to use this type, or there is
/// performance overheads for using this general trace type. In such cases, they implement their
/// specific [`ProcessEdgesWork`] instances.
// TODO: This is not used any more. Should we remove it?
pub struct SFTProcessEdges<VM: VMBinding> {
pub base: ProcessEdgesBase<VM>,
}
impl<VM: VMBinding> ProcessEdgesWork for SFTProcessEdges<VM> {
type VM = VM;
type ScanObjectsWorkType = ScanObjects<Self>;
fn new(
slots: Vec<SlotOf<Self>>,
roots: bool,
mmtk: &'static MMTK<VM>,
bucket: WorkBucketStage,
) -> Self {
let base = ProcessEdgesBase::new(slots, roots, mmtk, bucket);
Self { base }
}
fn trace_object(&mut self, object: ObjectReference) -> ObjectReference {
use crate::policy::sft::GCWorkerMutRef;
// Erase <VM> type parameter
let worker = GCWorkerMutRef::new(self.worker());
// Invoke trace object on sft
let sft = unsafe { crate::mmtk::SFT_MAP.get_unchecked(object.to_raw_address()) };
sft.sft_trace_object(&mut self.base.nodes, object, worker)
}
fn create_scan_work(&self, nodes: Vec<ObjectReference>) -> ScanObjects<Self> {
ScanObjects::<Self>::new(nodes, false, self.bucket)
}
}
/// An implementation of `RootsWorkFactory` that creates work packets based on `ProcessEdgesWork`
/// for handling roots. The `DPE` and the `PPE` type parameters correspond to the
/// `DefaultProcessEdge` and the `PinningProcessEdges` type members of the [`GCWorkContext`] trait.
pub(crate) struct ProcessEdgesWorkRootsWorkFactory<
VM: VMBinding,
DPE: ProcessEdgesWork<VM = VM>,
PPE: ProcessEdgesWork<VM = VM>,
> {
mmtk: &'static MMTK<VM>,
phantom: PhantomData<(DPE, PPE)>,
}
impl<VM: VMBinding, DPE: ProcessEdgesWork<VM = VM>, PPE: ProcessEdgesWork<VM = VM>> Clone
for ProcessEdgesWorkRootsWorkFactory<VM, DPE, PPE>
{
fn clone(&self) -> Self {
Self {
mmtk: self.mmtk,
phantom: PhantomData,
}
}
}
/// For USDT tracepoints for roots.
/// Keep in sync with `tools/tracing/timeline/visualize.py`.
#[repr(usize)]
enum RootsKind {
NORMAL = 0,
PINNING = 1,
TPINNING = 2,
}
impl<VM: VMBinding, DPE: ProcessEdgesWork<VM = VM>, PPE: ProcessEdgesWork<VM = VM>>
RootsWorkFactory<VM::VMSlot> for ProcessEdgesWorkRootsWorkFactory<VM, DPE, PPE>
{
fn create_process_roots_work(&mut self, slots: Vec<VM::VMSlot>) {
// Note: We should use the same USDT name "mmtk:roots" for all the three kinds of roots. A
// VM binding may not call all of the three methods in this impl. For example, the OpenJDK
// binding only calls `create_process_roots_work`, and the Ruby binding only calls
// `create_process_pinning_roots_work`. Because `ProcessEdgesWorkRootsWorkFactory<VM, DPE,
// PPE>` is a generic type, the Rust compiler emits the function bodies on demand, so the
// resulting machine code may not contain all three USDT trace points. If they have
// different names, and our `capture.bt` mentions all of them, `bpftrace` may complain that
// it cannot find one or more of those USDT trace points in the binary.
probe!(mmtk, roots, RootsKind::NORMAL, slots.len());
crate::memory_manager::add_work_packet(
self.mmtk,
WorkBucketStage::Closure,
DPE::new(slots, true, self.mmtk, WorkBucketStage::Closure),
);
}
fn create_process_pinning_roots_work(&mut self, nodes: Vec<ObjectReference>) {
probe!(mmtk, roots, RootsKind::PINNING, nodes.len());
// Will process roots within the PinningRootsTrace bucket
// And put work in the Closure bucket
crate::memory_manager::add_work_packet(
self.mmtk,
WorkBucketStage::PinningRootsTrace,
ProcessRootNode::<VM, PPE, DPE>::new(nodes, WorkBucketStage::Closure),
);
}
fn create_process_tpinning_roots_work(&mut self, nodes: Vec<ObjectReference>) {
probe!(mmtk, roots, RootsKind::TPINNING, nodes.len());
crate::memory_manager::add_work_packet(
self.mmtk,
WorkBucketStage::TPinningClosure,
ProcessRootNode::<VM, PPE, PPE>::new(nodes, WorkBucketStage::TPinningClosure),
);
}
}
impl<VM: VMBinding, DPE: ProcessEdgesWork<VM = VM>, PPE: ProcessEdgesWork<VM = VM>>
ProcessEdgesWorkRootsWorkFactory<VM, DPE, PPE>
{
fn new(mmtk: &'static MMTK<VM>) -> Self {
Self {
mmtk,
phantom: PhantomData,
}
}
}
impl<VM: VMBinding> Deref for SFTProcessEdges<VM> {
type Target = ProcessEdgesBase<VM>;
fn deref(&self) -> &Self::Target {
&self.base
}
}
impl<VM: VMBinding> DerefMut for SFTProcessEdges<VM> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.base
}
}
/// Trait for a work packet that scans objects
pub trait ScanObjectsWork<VM: VMBinding>: GCWork<VM> + Sized {
/// The associated ProcessEdgesWork for processing the outgoing edges of the objects in this
/// packet.
type E: ProcessEdgesWork<VM = VM>;
/// Called after each object is scanned.
fn post_scan_object(&self, object: ObjectReference);
/// Return the work bucket for this work packet and its derived work packets.
fn get_bucket(&self) -> WorkBucketStage;
/// The common code for ScanObjects and PlanScanObjects.
fn do_work_common(
&self,
buffer: &[ObjectReference],
worker: &mut GCWorker<<Self::E as ProcessEdgesWork>::VM>,
mmtk: &'static MMTK<<Self::E as ProcessEdgesWork>::VM>,
) {
let tls = worker.tls;
let objects_to_scan = buffer;
// Scan the objects in the list that supports slot-enququing.
let mut scan_later = vec![];
{
let mut closure = ObjectsClosure::<Self::E>::new(worker, self.get_bucket());
// For any object we need to scan, we count its live bytes.
// Check the option outside the loop for better performance.
if crate::util::rust_util::unlikely(*mmtk.get_options().count_live_bytes_in_gc) {
// Borrow before the loop.
let mut live_bytes_stats = closure.worker.shared.live_bytes_per_space.borrow_mut();
for object in objects_to_scan.iter().copied() {
crate::scheduler::worker::GCWorkerShared::<VM>::increase_live_bytes(
&mut live_bytes_stats,
object,
);
}
}
for object in objects_to_scan.iter().copied() {
if <VM as VMBinding>::VMScanning::support_slot_enqueuing(tls, object) {
trace!("Scan object (slot) {}", object);
// If an object supports slot-enqueuing, we enqueue its slots.
<VM as VMBinding>::VMScanning::scan_object(tls, object, &mut closure);
self.post_scan_object(object);
} else {
// If an object does not support slot-enqueuing, we have to use
// `Scanning::scan_object_and_trace_edges` and offload the job of updating the
// reference field to the VM.
//
// However, at this point, `closure` is borrowing `worker`.
// So we postpone the processing of objects that needs object enqueuing
scan_later.push(object);
}
}
}
let total_objects = objects_to_scan.len();
let scan_and_trace = scan_later.len();
probe!(mmtk, scan_objects, total_objects, scan_and_trace);
// If any object does not support slot-enqueuing, we process them now.
if !scan_later.is_empty() {
let object_tracer_context = ProcessEdgesWorkTracerContext::<Self::E> {
stage: self.get_bucket(),
phantom_data: PhantomData,
};
object_tracer_context.with_tracer(worker, |object_tracer| {
// Scan objects and trace their outgoing edges at the same time.
for object in scan_later.iter().copied() {
trace!("Scan object (node) {}", object);
<VM as VMBinding>::VMScanning::scan_object_and_trace_edges(
tls,
object,
object_tracer,
);
self.post_scan_object(object);
}
});
}
}
}
/// Scan objects and enqueue the slots of the objects. For objects that do not support
/// slot-enqueuing, this work packet also traces their outgoing edges directly.
///
/// This work packet does not execute policy-specific post-scanning hooks
/// (it won't call `post_scan_object()` in [`policy::gc_work::PolicyTraceObject`]).
/// It should be used only for policies that do not perform policy-specific actions when scanning
/// an object.
pub struct ScanObjects<Edges: ProcessEdgesWork> {
buffer: Vec<ObjectReference>,
#[allow(unused)]
concurrent: bool,
phantom: PhantomData<Edges>,
bucket: WorkBucketStage,
}
impl<Edges: ProcessEdgesWork> ScanObjects<Edges> {
pub fn new(buffer: Vec<ObjectReference>, concurrent: bool, bucket: WorkBucketStage) -> Self {
Self {
buffer,
concurrent,
phantom: PhantomData,
bucket,
}
}
}
impl<VM: VMBinding, E: ProcessEdgesWork<VM = VM>> ScanObjectsWork<VM> for ScanObjects<E> {
type E = E;
fn get_bucket(&self) -> WorkBucketStage {
self.bucket
}
fn post_scan_object(&self, _object: ObjectReference) {
// Do nothing.
}
}
impl<E: ProcessEdgesWork> GCWork<E::VM> for ScanObjects<E> {
fn do_work(&mut self, worker: &mut GCWorker<E::VM>, mmtk: &'static MMTK<E::VM>) {
trace!("ScanObjects");
self.do_work_common(&self.buffer, worker, mmtk);
trace!("ScanObjects End");
}
}
use crate::mmtk::MMTK;
use crate::plan::Plan;
use crate::plan::PlanTraceObject;
use crate::policy::gc_work::TraceKind;
/// This provides an implementation of [`crate::scheduler::gc_work::ProcessEdgesWork`]. A plan that implements
/// `PlanTraceObject` can use this work packet for tracing objects.
pub struct PlanProcessEdges<
VM: VMBinding,
P: Plan<VM = VM> + PlanTraceObject<VM>,
const KIND: TraceKind,
> {
plan: &'static P,
base: ProcessEdgesBase<VM>,
}
impl<VM: VMBinding, P: PlanTraceObject<VM> + Plan<VM = VM>, const KIND: TraceKind> ProcessEdgesWork
for PlanProcessEdges<VM, P, KIND>
{
type VM = VM;
type ScanObjectsWorkType = PlanScanObjects<Self, P>;
fn new(
slots: Vec<SlotOf<Self>>,
roots: bool,
mmtk: &'static MMTK<VM>,
bucket: WorkBucketStage,
) -> Self {
let base = ProcessEdgesBase::new(slots, roots, mmtk, bucket);
let plan = base.plan().downcast_ref::<P>().unwrap();
Self { plan, base }
}
fn create_scan_work(&self, nodes: Vec<ObjectReference>) -> Self::ScanObjectsWorkType {
PlanScanObjects::<Self, P>::new(self.plan, nodes, false, self.bucket)
}
fn trace_object(&mut self, object: ObjectReference) -> ObjectReference {
// We cannot borrow `self` twice in a call, so we extract `worker` as a local variable.
let worker = self.worker();
self.plan
.trace_object::<VectorObjectQueue, KIND>(&mut self.base.nodes, object, worker)
}
fn process_slot(&mut self, slot: SlotOf<Self>) {
let Some(object) = slot.load() else {
// Skip slots that are not holding an object reference.
return;
};
let new_object = self.trace_object(object);
if P::may_move_objects::<KIND>() && new_object != object {
slot.store(new_object);
}
}
}
// Impl Deref/DerefMut to ProcessEdgesBase for PlanProcessEdges
impl<VM: VMBinding, P: PlanTraceObject<VM> + Plan<VM = VM>, const KIND: TraceKind> Deref
for PlanProcessEdges<VM, P, KIND>
{
type Target = ProcessEdgesBase<VM>;
fn deref(&self) -> &Self::Target {
&self.base
}
}
impl<VM: VMBinding, P: PlanTraceObject<VM> + Plan<VM = VM>, const KIND: TraceKind> DerefMut
for PlanProcessEdges<VM, P, KIND>
{
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.base
}
}
/// This is an alternative to `ScanObjects` that calls the `post_scan_object` of the policy
/// selected by the plan. It is applicable to plans that derive `PlanTraceObject`.
pub struct PlanScanObjects<E: ProcessEdgesWork, P: Plan<VM = E::VM> + PlanTraceObject<E::VM>> {
plan: &'static P,
buffer: Vec<ObjectReference>,
#[allow(dead_code)]
concurrent: bool,
phantom: PhantomData<E>,
bucket: WorkBucketStage,
}
impl<E: ProcessEdgesWork, P: Plan<VM = E::VM> + PlanTraceObject<E::VM>> PlanScanObjects<E, P> {
pub fn new(
plan: &'static P,
buffer: Vec<ObjectReference>,
concurrent: bool,
bucket: WorkBucketStage,
) -> Self {
Self {
plan,
buffer,
concurrent,
phantom: PhantomData,
bucket,
}
}
}
impl<E: ProcessEdgesWork, P: Plan<VM = E::VM> + PlanTraceObject<E::VM>> ScanObjectsWork<E::VM>
for PlanScanObjects<E, P>
{
type E = E;
fn get_bucket(&self) -> WorkBucketStage {
self.bucket
}
fn post_scan_object(&self, object: ObjectReference) {
self.plan.post_scan_object(object);
}
}
impl<E: ProcessEdgesWork, P: Plan<VM = E::VM> + PlanTraceObject<E::VM>> GCWork<E::VM>
for PlanScanObjects<E, P>
{
fn do_work(&mut self, worker: &mut GCWorker<E::VM>, mmtk: &'static MMTK<E::VM>) {
trace!("PlanScanObjects");
self.do_work_common(&self.buffer, worker, mmtk);
trace!("PlanScanObjects End");
}
}
/// This work packet processes pinning roots.
///
/// The `roots` member holds a list of `ObjectReference` to objects directly pointed by roots.
/// These objects will be traced using `R2OPE` (Root-to-Object Process Edges).
///
/// After that, it will create work packets for tracing their children. Those work packets (and
/// the work packets further created by them) will use `O2OPE` (Object-to-Object Process Edges) as
/// their `ProcessEdgesWork` implementations.
///
/// Because `roots` are pinning roots, `R2OPE` must be a `ProcessEdgesWork` that never moves any
/// object.
///
/// The choice of `O2OPE` determines whether the `roots` are transitively pinning or not.
///
/// - If `O2OPE` is set to a `ProcessEdgesWork` that never moves objects, all descendents of
/// `roots` will not be moved in this GC. That implements transitive pinning roots.
/// - If `O2OPE` may move objects, then this `ProcessRootsNode<VM, R2OPE, O2OPE>` work packet
/// will only pin the objects in `roots` (because `R2OPE` must not move objects anyway), but
/// not their descendents.
pub(crate) struct ProcessRootNode<
VM: VMBinding,
R2OPE: ProcessEdgesWork<VM = VM>,
O2OPE: ProcessEdgesWork<VM = VM>,
> {
phantom: PhantomData<(VM, R2OPE, O2OPE)>,
roots: Vec<ObjectReference>,
bucket: WorkBucketStage,
}
impl<VM: VMBinding, R2OPE: ProcessEdgesWork<VM = VM>, O2OPE: ProcessEdgesWork<VM = VM>>
ProcessRootNode<VM, R2OPE, O2OPE>
{
pub fn new(nodes: Vec<ObjectReference>, bucket: WorkBucketStage) -> Self {
Self {
phantom: PhantomData,
roots: nodes,
bucket,
}
}
}
impl<VM: VMBinding, R2OPE: ProcessEdgesWork<VM = VM>, O2OPE: ProcessEdgesWork<VM = VM>> GCWork<VM>
for ProcessRootNode<VM, R2OPE, O2OPE>
{
fn do_work(&mut self, worker: &mut GCWorker<VM>, mmtk: &'static MMTK<VM>) {
trace!("ProcessRootNode");
#[cfg(feature = "sanity")]
{
if !mmtk.is_in_sanity() {
mmtk.sanity_checker
.lock()
.unwrap()
.add_root_nodes(self.roots.clone());
}
}
// This step conceptually traces the edges from root slots to the objects they point to.
// However, VMs that deliver root objects instead of root slots are incapable of updating
// root slots. Therefore, we call `trace_object` on those objects, and assert the GC
// doesn't move those objects because we cannot store the updated references back to the
// slots.
//
// The `scanned_root_objects` variable will hold those root objects which are traced for the
// first time. We will create a work packet for scanning those roots.
let scanned_root_objects = {
// We create an instance of E to use its `trace_object` method and its object queue.
let mut process_edges_work =
R2OPE::new(vec![], true, mmtk, WorkBucketStage::PinningRootsTrace);
process_edges_work.set_worker(worker);
for object in self.roots.iter().copied() {
let new_object = process_edges_work.trace_object(object);
debug_assert_eq!(
object, new_object,
"Object moved while tracing root unmovable root object: {} -> {}",
object, new_object
);
}
// This contains root objects that are visited the first time.
// It is sufficient to only scan these objects.
process_edges_work.nodes.take()
};
let process_edges_work = O2OPE::new(vec![], false, mmtk, self.bucket);
let work = process_edges_work.create_scan_work(scanned_root_objects);
crate::memory_manager::add_work_packet(mmtk, self.bucket, work);
trace!("ProcessRootNode End");
}
}
/// A `ProcessEdgesWork` type that panics when any of its method is used.
/// This is currently used for plans that do not support transitively pinning.
#[derive(Default)]
pub struct UnsupportedProcessEdges<VM: VMBinding> {
phantom: PhantomData<VM>,
}
impl<VM: VMBinding> Deref for UnsupportedProcessEdges<VM> {
type Target = ProcessEdgesBase<VM>;
fn deref(&self) -> &Self::Target {
panic!("unsupported!")
}
}
impl<VM: VMBinding> DerefMut for UnsupportedProcessEdges<VM> {
fn deref_mut(&mut self) -> &mut Self::Target {
panic!("unsupported!")
}
}
impl<VM: VMBinding> ProcessEdgesWork for UnsupportedProcessEdges<VM> {
type VM = VM;
type ScanObjectsWorkType = ScanObjects<Self>;
fn new(
_slots: Vec<SlotOf<Self>>,
_roots: bool,
_mmtk: &'static MMTK<Self::VM>,
_bucket: WorkBucketStage,
) -> Self {
panic!("unsupported!")
}
fn trace_object(&mut self, _object: ObjectReference) -> ObjectReference {
panic!("unsupported!")
}
fn create_scan_work(&self, _nodes: Vec<ObjectReference>) -> Self::ScanObjectsWorkType {
panic!("unsupported!")
}
}