mmtk/util/alloc/free_list_allocator.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
// This is a free list allocator written based on Microsoft's mimalloc allocator https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action/
use std::sync::Arc;
use crate::policy::marksweepspace::native_ms::*;
use crate::util::alloc::allocator;
use crate::util::alloc::Allocator;
use crate::util::linear_scan::Region;
use crate::util::Address;
use crate::util::VMThread;
use crate::vm::VMBinding;
use super::allocator::AllocatorContext;
/// A MiMalloc free list allocator
#[repr(C)]
pub struct FreeListAllocator<VM: VMBinding> {
/// [`VMThread`] associated with this allocator instance
pub tls: VMThread,
space: &'static MarkSweepSpace<VM>,
context: Arc<AllocatorContext<VM>>,
/// blocks with free space
pub available_blocks: BlockLists,
/// blocks with free space for precise stress GC
/// For precise stress GC, we need to be able to trigger slowpath allocation for
/// each allocation. To achieve this, we put available blocks to this list. So
/// normal fastpath allocation will fail, as they will see the block lists
/// as empty.
pub available_blocks_stress: BlockLists,
/// blocks that are marked, not swept
pub unswept_blocks: BlockLists,
/// full blocks
pub consumed_blocks: BlockLists,
}
impl<VM: VMBinding> Allocator<VM> for FreeListAllocator<VM> {
fn get_tls(&self) -> VMThread {
self.tls
}
fn get_space(&self) -> &'static dyn crate::policy::space::Space<VM> {
self.space
}
fn get_context(&self) -> &AllocatorContext<VM> {
&self.context
}
// Find a block with free space and allocate to it
fn alloc(&mut self, size: usize, align: usize, offset: usize) -> Address {
debug_assert!(
size <= MAX_BIN_SIZE,
"Alloc request for {} bytes is too big.",
size
);
debug_assert!(align <= VM::MAX_ALIGNMENT);
debug_assert!(align >= VM::MIN_ALIGNMENT);
if let Some(block) = self.find_free_block_local(size, align) {
let cell = self.block_alloc(block);
if !cell.is_zero() {
// We succeeded in fastpath alloc, this cannot be precise stress test
debug_assert!(
!(*self.context.options.precise_stress
&& self.context.options.is_stress_test_gc_enabled())
);
let res = allocator::align_allocation::<VM>(cell, align, offset);
// Make sure that the allocation region is within the cell
#[cfg(debug_assertions)]
{
let cell_size = block.load_block_cell_size();
debug_assert!(
res + size <= cell + cell_size,
"Allocating (size = {}, align = {}, offset = {}) to the cell {} of size {}, but the end of the allocation region {} is beyond the cell end {}",
size, align, offset, cell, cell_size, res + size, cell + cell_size
);
}
return res;
}
}
self.alloc_slow(size, align, offset)
}
fn alloc_slow_once(&mut self, size: usize, align: usize, offset: usize) -> Address {
// Try get a block from the space
if let Some(block) = self.acquire_global_block(size, align, false) {
let addr = self.block_alloc(block);
allocator::align_allocation::<VM>(addr, align, offset)
} else {
Address::ZERO
}
}
fn does_thread_local_allocation(&self) -> bool {
true
}
fn get_thread_local_buffer_granularity(&self) -> usize {
Block::BYTES
}
fn alloc_slow_once_precise_stress(
&mut self,
size: usize,
align: usize,
offset: usize,
need_poll: bool,
) -> Address {
trace!("allow slow precise stress s={}", size);
if need_poll {
self.acquire_global_block(0, 0, true);
}
// mimic what fastpath allocation does, except that we allocate from available_blocks_stress.
if let Some(block) = self.find_free_block_stress(size, align) {
let cell = self.block_alloc(block);
allocator::align_allocation::<VM>(cell, align, offset)
} else {
Address::ZERO
}
}
fn on_mutator_destroy(&mut self) {
let mut global = self.space.get_abandoned_block_lists().lock().unwrap();
self.abandon_blocks(&mut global);
}
}
impl<VM: VMBinding> FreeListAllocator<VM> {
// New free list allcoator
pub(crate) fn new(
tls: VMThread,
space: &'static MarkSweepSpace<VM>,
context: Arc<AllocatorContext<VM>>,
) -> Self {
FreeListAllocator {
tls,
space,
context,
available_blocks: new_empty_block_lists(),
available_blocks_stress: new_empty_block_lists(),
unswept_blocks: new_empty_block_lists(),
consumed_blocks: new_empty_block_lists(),
}
}
// Find a free cell within a given block
fn block_alloc(&mut self, block: Block) -> Address {
let cell = block.load_free_list();
if cell.is_zero() {
return cell; // return failed allocation
}
let next_cell = unsafe { cell.load::<Address>() };
// Clear the link
unsafe { cell.store::<Address>(Address::ZERO) };
debug_assert!(
next_cell.is_zero() || block.includes_address(next_cell),
"next_cell {} is not in {:?}",
next_cell,
block
);
block.store_free_list(next_cell);
// Zeroing memory right before we return it.
// If we move the zeroing to somewhere else, we need to clear the list link here: cell.store::<Address>(Address::ZERO)
let cell_size = block.load_block_cell_size();
crate::util::memory::zero(cell, cell_size);
// Make sure the memory is zeroed. This looks silly as we zero the cell right before this check.
// But we would need to move the zeroing to somewhere so we can do zeroing at a coarser grainularity.
#[cfg(debug_assertions)]
{
let mut cursor = cell;
while cursor < cell + cell_size {
debug_assert_eq!(unsafe { cursor.load::<usize>() }, 0);
cursor += crate::util::constants::BYTES_IN_ADDRESS;
}
}
cell
}
// Find an available block when stress GC is enabled. This includes getting a block from the space.
fn find_free_block_stress(&mut self, size: usize, align: usize) -> Option<Block> {
Self::find_free_block_with(
&mut self.available_blocks_stress,
&mut self.consumed_blocks,
size,
align,
)
.or_else(|| self.recycle_local_blocks(size, align, true))
.or_else(|| self.acquire_global_block(size, align, true))
}
// Find an available block from local block lists
fn find_free_block_local(&mut self, size: usize, align: usize) -> Option<Block> {
Self::find_free_block_with(
&mut self.available_blocks,
&mut self.consumed_blocks,
size,
align,
)
.or_else(|| self.recycle_local_blocks(size, align, false))
}
// Find an available block
// This will usually be the first block on the available list. If all available blocks are found
// to be full, other lists are searched
// This function allows different available block lists -- normal allocation uses self.avaialble_blocks, and precise stress test uses self.avialable_blocks_stress.
fn find_free_block_with(
available_blocks: &mut BlockLists,
consumed_blocks: &mut BlockLists,
size: usize,
align: usize,
) -> Option<Block> {
let bin = mi_bin::<VM>(size, align);
debug_assert!(bin <= MAX_BIN);
let available = &mut available_blocks[bin];
debug_assert!(available.size >= size);
if !available.is_empty() {
let mut cursor = available.first;
while let Some(block) = cursor {
if block.has_free_cells() {
return Some(block);
}
available.pop();
consumed_blocks.get_mut(bin).unwrap().push(block);
cursor = available.first;
}
}
debug_assert!(available_blocks[bin].is_empty());
None
}
/// Add a block to the given bin in the available block lists. Depending on which available block list we are using, this
/// method may add the block to available_blocks, or available_blocks_stress.
fn add_to_available_blocks(&mut self, bin: usize, block: Block, stress: bool) {
if stress {
debug_assert!(*self.context.options.precise_stress);
self.available_blocks_stress[bin].push(block);
} else {
self.available_blocks[bin].push(block);
}
}
/// Tries to recycle local blocks if there is any. This is a no-op for eager sweeping mark sweep.
fn recycle_local_blocks(
&mut self,
size: usize,
align: usize,
_stress_test: bool,
) -> Option<Block> {
if cfg!(feature = "eager_sweeping") {
// We have swept blocks in the last GC. If we run out of available blocks, there is nothing we can do.
None
} else {
// Get blocks from unswept_blocks and attempt to sweep
loop {
let bin = mi_bin::<VM>(size, align);
debug_assert!(self.available_blocks[bin].is_empty()); // only use this function if there are no blocks available
if let Some(block) = self.unswept_blocks.get_mut(bin).unwrap().pop() {
block.sweep::<VM>();
if block.has_free_cells() {
// recyclable block
self.add_to_available_blocks(
bin,
block,
self.context.options.is_stress_test_gc_enabled(),
);
return Some(block);
} else {
// nothing was freed from this block
self.consumed_blocks.get_mut(bin).unwrap().push(block);
}
} else {
return None;
}
}
}
}
/// Get a block from the space.
fn acquire_global_block(
&mut self,
size: usize,
align: usize,
stress_test: bool,
) -> Option<Block> {
let bin = mi_bin::<VM>(size, align);
loop {
match self.space.acquire_block(self.tls, size, align) {
crate::policy::marksweepspace::native_ms::BlockAcquireResult::Exhausted => {
debug!("Acquire global block: None");
// GC
return None;
}
crate::policy::marksweepspace::native_ms::BlockAcquireResult::Fresh(block) => {
debug!("Acquire global block: Fresh {:?}", block);
self.add_to_available_blocks(bin, block, stress_test);
self.init_block(block, self.available_blocks[bin].size);
return Some(block);
}
crate::policy::marksweepspace::native_ms::BlockAcquireResult::AbandonedAvailable(block) => {
debug!("Acquire global block: AbandonedAvailable {:?}", block);
block.store_tls(self.tls);
if block.has_free_cells() {
self.add_to_available_blocks(bin, block, stress_test);
return Some(block);
} else {
self.consumed_blocks[bin].push(block);
}
}
crate::policy::marksweepspace::native_ms::BlockAcquireResult::AbandonedUnswept(block) => {
debug!("Acquire global block: AbandonedUnswep {:?}", block);
block.store_tls(self.tls);
block.sweep::<VM>();
if block.has_free_cells() {
self.add_to_available_blocks(bin, block, stress_test);
return Some(block);
} else {
self.consumed_blocks[bin].push(block);
}
}
}
}
}
fn init_block(&self, block: Block, cell_size: usize) {
debug_assert_ne!(cell_size, 0);
self.space.record_new_block(block);
// construct free list
let block_end = block.start() + Block::BYTES;
let mut old_cell = unsafe { Address::zero() };
let mut new_cell = block.start();
let final_cell = loop {
unsafe {
new_cell.store::<Address>(old_cell);
}
old_cell = new_cell;
new_cell += cell_size;
if new_cell + cell_size > block_end {
break old_cell;
};
};
block.store_free_list(final_cell);
block.store_block_cell_size(cell_size);
#[cfg(feature = "malloc_native_mimalloc")]
{
block.store_local_free_list(Address::ZERO);
block.store_thread_free_list(Address::ZERO);
}
self.store_block_tls(block);
}
#[cfg(feature = "malloc_native_mimalloc")]
fn free(&self, addr: Address) {
assert!(!addr.is_zero(), "Attempted to free zero address.");
use crate::util::ObjectReference;
let block = Block::from_unaligned_address(addr);
let block_tls = block.load_tls();
if self.tls == block_tls {
// same thread that allocated
let local_free = block.load_local_free_list();
unsafe {
addr.store(local_free);
}
block.store_local_free_list(addr);
} else {
// different thread to allocator
unreachable!(
"tlss don't match freeing from block {}, my tls = {:?}, block tls = {:?}",
block.start(),
self.tls,
block.load_tls()
);
// I am not sure whether the following code would be used to free a block for other thread. I will just keep it here as commented out.
// let mut success = false;
// while !success {
// let thread_free = FreeListAllocator::<VM>::load_thread_free_list(block);
// unsafe {
// addr.store(thread_free);
// }
// success = FreeListAllocator::<VM>::cas_thread_free_list(&self, block, thread_free, addr);
// }
}
// unset allocation bit
// Note: We cannot use `unset_vo_bit_unsafe` because two threads may attempt to free
// objects at adjacent addresses, and they may share the same byte in the VO bit metadata.
crate::util::metadata::vo_bit::unset_vo_bit(unsafe {
ObjectReference::from_raw_address_unchecked(addr)
})
}
fn store_block_tls(&self, block: Block) {
block.store_tls(self.tls);
}
pub(crate) fn prepare(&mut self) {}
pub(crate) fn release(&mut self) {
for bin in 0..MI_BIN_FULL {
let unswept = self.unswept_blocks.get_mut(bin).unwrap();
// If we do eager sweeping, we should have no unswept blocks.
debug_assert!(!cfg!(feature = "eager_sweeping") || unswept.is_empty());
let mut sweep_later = |list: &mut BlockList| {
list.release_blocks(self.space);
// For eager sweeping, that's it. We just release unmarked blocks, and leave marked
// blocks to be swept later in the `SweepChunk` work packet.
// For lazy sweeping, we move blocks from available and consumed to unswept. When
// an allocator tries to use them, they will sweep the block.
if cfg!(not(feature = "eager_sweeping")) {
unswept.append(list);
}
};
sweep_later(&mut self.available_blocks[bin]);
sweep_later(&mut self.available_blocks_stress[bin]);
sweep_later(&mut self.consumed_blocks[bin]);
}
// We abandon block lists immediately. Otherwise, some mutators will hold lots of blocks
// locally and prevent other mutators to use.
{
let mut global = self.space.get_abandoned_block_lists_in_gc().lock().unwrap();
self.abandon_blocks(&mut global);
}
self.space.release_packet_done();
}
fn abandon_blocks(&mut self, global: &mut AbandonedBlockLists) {
for i in 0..MI_BIN_FULL {
let available = self.available_blocks.get_mut(i).unwrap();
if !available.is_empty() {
global.available[i].append(available);
}
let available_stress = self.available_blocks_stress.get_mut(i).unwrap();
if !available_stress.is_empty() {
global.available[i].append(available_stress);
}
let consumed = self.consumed_blocks.get_mut(i).unwrap();
if !consumed.is_empty() {
global.consumed[i].append(consumed);
}
let unswept = self.unswept_blocks.get_mut(i).unwrap();
if !unswept.is_empty() {
global.unswept[i].append(unswept);
}
}
}
}