1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
use std::sync::Arc;

use crate::util::Address;

use crate::util::alloc::Allocator;

use crate::policy::space::Space;
use crate::util::conversions::bytes_to_pages_up;
use crate::util::opaque_pointer::*;
use crate::vm::VMBinding;

const BYTES_IN_PAGE: usize = 1 << 12;
const BLOCK_SIZE: usize = 8 * BYTES_IN_PAGE;
const BLOCK_MASK: usize = BLOCK_SIZE - 1;

/// A bump pointer allocator. It keeps a thread local allocation buffer,
/// and bumps a cursor to allocate from the buffer.
#[repr(C)]
pub struct BumpAllocator<VM: VMBinding> {
    /// [`VMThread`] associated with this allocator instance
    pub tls: VMThread,
    /// Bump-pointer itself.
    pub bump_pointer: BumpPointer,
    /// [`Space`](src/policy/space/Space) instance associated with this allocator instance.
    space: &'static dyn Space<VM>,
    pub(in crate::util::alloc) context: Arc<AllocatorContext<VM>>,
}

/// A common fast-path bump-pointer allocator shared across different allocator implementations
/// that use bump-pointer allocation.
/// A `BumpPointer` is always initialized with cursor = 0, limit = 0, so the first allocation
/// always fails the check of `cursor + size < limit` and goes to the slowpath. A binding
/// can also take advantage of this design to zero-initialize the a bump pointer.
#[repr(C)]
#[derive(Copy, Clone)]
pub struct BumpPointer {
    /// The cursor inside the allocation buffer where the next object will be allocated.
    pub cursor: Address,
    /// The upperbound of the allocation buffer.
    pub limit: Address,
}

impl BumpPointer {
    /// Reset the cursor and limit to the given values.
    pub fn reset(&mut self, start: Address, end: Address) {
        self.cursor = start;
        self.limit = end;
    }
}

impl std::default::Default for BumpPointer {
    /// Defaults to 0,0. In this case, the first
    /// allocation would naturally fail the check
    /// `cursor + size < limit`, and go to the slowpath.
    fn default() -> Self {
        BumpPointer {
            cursor: Address::ZERO,
            limit: Address::ZERO,
        }
    }
}

impl<VM: VMBinding> BumpAllocator<VM> {
    pub(crate) fn set_limit(&mut self, start: Address, limit: Address) {
        self.bump_pointer.reset(start, limit);
    }

    pub(crate) fn reset(&mut self) {
        let zero = unsafe { Address::zero() };
        self.bump_pointer.reset(zero, zero);
    }

    pub(crate) fn rebind(&mut self, space: &'static dyn Space<VM>) {
        self.reset();
        self.space = space;
    }
}

use crate::util::alloc::allocator::align_allocation_no_fill;
use crate::util::alloc::fill_alignment_gap;

use super::allocator::AllocatorContext;

impl<VM: VMBinding> Allocator<VM> for BumpAllocator<VM> {
    fn get_space(&self) -> &'static dyn Space<VM> {
        self.space
    }

    fn get_context(&self) -> &AllocatorContext<VM> {
        &self.context
    }

    fn does_thread_local_allocation(&self) -> bool {
        true
    }

    fn get_thread_local_buffer_granularity(&self) -> usize {
        BLOCK_SIZE
    }

    fn alloc(&mut self, size: usize, align: usize, offset: usize) -> Address {
        trace!("alloc");
        let result = align_allocation_no_fill::<VM>(self.bump_pointer.cursor, align, offset);
        let new_cursor = result + size;

        if new_cursor > self.bump_pointer.limit {
            trace!("Thread local buffer used up, go to alloc slow path");
            self.alloc_slow(size, align, offset)
        } else {
            fill_alignment_gap::<VM>(self.bump_pointer.cursor, result);
            self.bump_pointer.cursor = new_cursor;
            trace!(
                "Bump allocation size: {}, result: {}, new_cursor: {}, limit: {}",
                size,
                result,
                self.bump_pointer.cursor,
                self.bump_pointer.limit
            );
            result
        }
    }

    fn alloc_slow_once(&mut self, size: usize, align: usize, offset: usize) -> Address {
        trace!("alloc_slow");
        self.acquire_block(size, align, offset, false)
    }

    /// Slow path for allocation if precise stress testing has been enabled.
    /// It works by manipulating the limit to be always below the cursor.
    /// Can have three different cases:
    ///  - acquires a new block if the hard limit has been met;
    ///  - allocates an object using the bump pointer semantics from the
    ///    fastpath if there is sufficient space; and
    ///  - does not allocate an object but forces a poll for GC if the stress
    ///    factor has been crossed.
    fn alloc_slow_once_precise_stress(
        &mut self,
        size: usize,
        align: usize,
        offset: usize,
        need_poll: bool,
    ) -> Address {
        if need_poll {
            return self.acquire_block(size, align, offset, true);
        }

        trace!("alloc_slow stress_test");
        let result = align_allocation_no_fill::<VM>(self.bump_pointer.cursor, align, offset);
        let new_cursor = result + size;

        // For stress test, limit is [0, block_size) to artificially make the
        // check in the fastpath (alloc()) fail. The real limit is recovered by
        // adding it to the current cursor.
        if new_cursor > self.bump_pointer.cursor + self.bump_pointer.limit.as_usize() {
            self.acquire_block(size, align, offset, true)
        } else {
            fill_alignment_gap::<VM>(self.bump_pointer.cursor, result);
            self.bump_pointer.limit -= new_cursor - self.bump_pointer.cursor;
            self.bump_pointer.cursor = new_cursor;
            trace!(
                "alloc_slow: Bump allocation size: {}, result: {}, new_cursor: {}, limit: {}",
                size,
                result,
                self.bump_pointer.cursor,
                self.bump_pointer.limit
            );
            result
        }
    }

    fn get_tls(&self) -> VMThread {
        self.tls
    }
}

impl<VM: VMBinding> BumpAllocator<VM> {
    pub(crate) fn new(
        tls: VMThread,
        space: &'static dyn Space<VM>,
        context: Arc<AllocatorContext<VM>>,
    ) -> Self {
        BumpAllocator {
            tls,
            bump_pointer: BumpPointer::default(),
            space,
            context,
        }
    }

    fn acquire_block(
        &mut self,
        size: usize,
        align: usize,
        offset: usize,
        stress_test: bool,
    ) -> Address {
        if self.space.will_oom_on_acquire(self.tls, size) {
            return Address::ZERO;
        }

        let block_size = (size + BLOCK_MASK) & (!BLOCK_MASK);
        let acquired_start = self.space.acquire(self.tls, bytes_to_pages_up(block_size));
        if acquired_start.is_zero() {
            trace!("Failed to acquire a new block");
            acquired_start
        } else {
            trace!(
                "Acquired a new block of size {} with start address {}",
                block_size,
                acquired_start
            );
            if !stress_test {
                self.set_limit(acquired_start, acquired_start + block_size);
                self.alloc(size, align, offset)
            } else {
                // For a stress test, we artificially make the fastpath fail by
                // manipulating the limit as below.
                // The assumption here is that we use an address range such that
                // cursor > block_size always.
                self.set_limit(acquired_start, unsafe { Address::from_usize(block_size) });
                // Note that we have just acquired a new block so we know that we don't have to go
                // through the entire allocation sequence again, we can directly call the slow path
                // allocation.
                self.alloc_slow_once_precise_stress(size, align, offset, false)
            }
        }
    }
}