mmtk/util/alloc/
allocator.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
use crate::global_state::GlobalState;
use crate::util::address::Address;
#[cfg(feature = "analysis")]
use crate::util::analysis::AnalysisManager;
use crate::util::heap::gc_trigger::GCTrigger;
use crate::util::options::Options;
use crate::MMTK;

use std::sync::atomic::Ordering;
use std::sync::Arc;

use crate::policy::space::Space;
use crate::util::constants::*;
use crate::util::opaque_pointer::*;
use crate::vm::VMBinding;
use crate::vm::{ActivePlan, Collection};
use downcast_rs::Downcast;

#[repr(C)]
#[derive(Debug)]
/// A list of errors that MMTk can encounter during allocation.
pub enum AllocationError {
    /// The specified heap size is too small for the given program to continue.
    HeapOutOfMemory,
    /// The OS is unable to mmap or acquire more memory. Critical error. MMTk expects the VM to
    /// abort if such an error is thrown.
    MmapOutOfMemory,
}

pub fn align_allocation_no_fill<VM: VMBinding>(
    region: Address,
    alignment: usize,
    offset: usize,
) -> Address {
    align_allocation_inner::<VM>(region, alignment, offset, VM::MIN_ALIGNMENT, false)
}

pub fn align_allocation<VM: VMBinding>(
    region: Address,
    alignment: usize,
    offset: usize,
) -> Address {
    align_allocation_inner::<VM>(region, alignment, offset, VM::MIN_ALIGNMENT, true)
}

pub fn align_allocation_inner<VM: VMBinding>(
    region: Address,
    alignment: usize,
    offset: usize,
    known_alignment: usize,
    fillalignmentgap: bool,
) -> Address {
    debug_assert!(known_alignment >= VM::MIN_ALIGNMENT);
    // Make sure MIN_ALIGNMENT is reasonable.
    #[allow(clippy::assertions_on_constants)]
    {
        debug_assert!(VM::MIN_ALIGNMENT >= BYTES_IN_INT);
    }
    debug_assert!(!(fillalignmentgap && region.is_zero()));
    debug_assert!(alignment <= VM::MAX_ALIGNMENT);
    debug_assert!(region.is_aligned_to(VM::ALLOC_END_ALIGNMENT));
    debug_assert!((alignment & (VM::MIN_ALIGNMENT - 1)) == 0);
    debug_assert!((offset & (VM::MIN_ALIGNMENT - 1)) == 0);

    // No alignment ever required.
    if alignment <= known_alignment || VM::MAX_ALIGNMENT <= VM::MIN_ALIGNMENT {
        return region;
    }

    // May require an alignment
    let region_isize = region.as_usize() as isize;
    let mask = (alignment - 1) as isize; // fromIntSignExtend
    let neg_off: isize = -(offset as isize); // fromIntSignExtend

    // TODO: Consider using neg_off.wrapping_sub_unsigned(region.as_usize()), and we can remove region_isize.
    // This requires Rust 1.66.0+.
    let delta = neg_off.wrapping_sub(region_isize) & mask; // Use wrapping_sub to avoid overflow

    if fillalignmentgap && (VM::ALIGNMENT_VALUE != 0) {
        fill_alignment_gap::<VM>(region, region + delta);
    }

    region + delta
}

/// Fill the specified region with the alignment value.
pub fn fill_alignment_gap<VM: VMBinding>(immut_start: Address, end: Address) {
    let mut start = immut_start;

    if VM::MAX_ALIGNMENT - VM::MIN_ALIGNMENT == BYTES_IN_INT {
        // At most a single hole
        if end - start != 0 {
            unsafe {
                start.store(VM::ALIGNMENT_VALUE);
            }
        }
    } else {
        while start < end {
            unsafe {
                start.store(VM::ALIGNMENT_VALUE);
            }
            start += BYTES_IN_INT;
        }
    }
}

pub fn get_maximum_aligned_size<VM: VMBinding>(size: usize, alignment: usize) -> usize {
    get_maximum_aligned_size_inner::<VM>(size, alignment, VM::MIN_ALIGNMENT)
}

pub fn get_maximum_aligned_size_inner<VM: VMBinding>(
    size: usize,
    alignment: usize,
    known_alignment: usize,
) -> usize {
    trace!(
        "size={}, alignment={}, known_alignment={}, MIN_ALIGNMENT={}",
        size,
        alignment,
        known_alignment,
        VM::MIN_ALIGNMENT
    );
    debug_assert!(size == size & !(known_alignment - 1));
    debug_assert!(known_alignment >= VM::MIN_ALIGNMENT);

    if VM::MAX_ALIGNMENT <= VM::MIN_ALIGNMENT || alignment <= known_alignment {
        size
    } else {
        size + alignment - known_alignment
    }
}

/// The context an allocator needs to access in order to perform allocation.
pub struct AllocatorContext<VM: VMBinding> {
    pub state: Arc<GlobalState>,
    pub options: Arc<Options>,
    pub gc_trigger: Arc<GCTrigger<VM>>,
    #[cfg(feature = "analysis")]
    pub analysis_manager: Arc<AnalysisManager<VM>>,
}

impl<VM: VMBinding> AllocatorContext<VM> {
    pub fn new(mmtk: &MMTK<VM>) -> Self {
        Self {
            state: mmtk.state.clone(),
            options: mmtk.options.clone(),
            gc_trigger: mmtk.gc_trigger.clone(),
            #[cfg(feature = "analysis")]
            analysis_manager: mmtk.analysis_manager.clone(),
        }
    }
}

/// A trait which implements allocation routines. Every allocator needs to implements this trait.
pub trait Allocator<VM: VMBinding>: Downcast {
    /// Return the [`VMThread`] associated with this allocator instance.
    fn get_tls(&self) -> VMThread;

    /// Return the [`Space`](src/policy/space/Space) instance associated with this allocator instance.
    fn get_space(&self) -> &'static dyn Space<VM>;

    /// Return the context for the allocator.
    fn get_context(&self) -> &AllocatorContext<VM>;

    /// Return if this allocator can do thread local allocation. If an allocator does not do thread
    /// local allocation, each allocation will go to slowpath and will have a check for GC polls.
    fn does_thread_local_allocation(&self) -> bool;

    /// Return at which granularity the allocator acquires memory from the global space and use
    /// them as thread local buffer. For example, the [`BumpAllocator`](crate::util::alloc::BumpAllocator) acquires memory at 32KB
    /// blocks. Depending on the actual size for the current object, they always acquire memory of
    /// N*32KB (N>=1). Thus the [`BumpAllocator`](crate::util::alloc::BumpAllocator) returns 32KB for this method.  Only allocators
    /// that do thread local allocation need to implement this method.
    fn get_thread_local_buffer_granularity(&self) -> usize {
        assert!(self.does_thread_local_allocation(), "An allocator that does not thread local allocation does not have a buffer granularity.");
        unimplemented!()
    }

    /// An allocation attempt. The implementation of this function depends on the allocator used.
    /// If an allocator supports thread local allocations, then the allocation will be serviced
    /// from its TLAB, otherwise it will default to using the slowpath, i.e. [`alloc_slow`](Allocator::alloc_slow).
    ///
    /// Note that in the case where the VM is out of memory, we invoke
    /// [`Collection::out_of_memory`] to inform the binding and then return a null pointer back to
    /// it. We have no assumptions on whether the VM will continue executing or abort immediately.
    ///
    /// An allocator needs to make sure the object reference for the returned address is in the same
    /// chunk as the returned address (so the side metadata and the SFT for an object reference is valid).
    /// See [`crate::util::alloc::object_ref_guard`](util/alloc/object_ref_guard).
    ///
    /// Arguments:
    /// * `size`: the allocation size in bytes.
    /// * `align`: the required alignment in bytes.
    /// * `offset` the required offset in bytes.
    fn alloc(&mut self, size: usize, align: usize, offset: usize) -> Address;

    /// Slowpath allocation attempt. This function is explicitly not inlined for performance
    /// considerations.
    ///
    /// Arguments:
    /// * `size`: the allocation size in bytes.
    /// * `align`: the required alignment in bytes.
    /// * `offset` the required offset in bytes.
    #[inline(never)]
    fn alloc_slow(&mut self, size: usize, align: usize, offset: usize) -> Address {
        self.alloc_slow_inline(size, align, offset)
    }

    /// Slowpath allocation attempt. This function executes the actual slowpath allocation.  A
    /// slowpath allocation in MMTk attempts to allocate the object using the per-allocator
    /// definition of [`alloc_slow_once`](Allocator::alloc_slow_once). This function also accounts for increasing the
    /// allocation bytes in order to support stress testing. In case precise stress testing is
    /// being used, the [`alloc_slow_once_precise_stress`](Allocator::alloc_slow_once_precise_stress) function is used instead.
    ///
    /// Note that in the case where the VM is out of memory, we invoke
    /// [`Collection::out_of_memory`] with a [`AllocationError::HeapOutOfMemory`] error to inform
    /// the binding and then return a null pointer back to it. We have no assumptions on whether
    /// the VM will continue executing or abort immediately on a
    /// [`AllocationError::HeapOutOfMemory`] error.
    ///
    /// Arguments:
    /// * `size`: the allocation size in bytes.
    /// * `align`: the required alignment in bytes.
    /// * `offset` the required offset in bytes.
    fn alloc_slow_inline(&mut self, size: usize, align: usize, offset: usize) -> Address {
        let tls = self.get_tls();
        let is_mutator = VM::VMActivePlan::is_mutator(tls);
        let stress_test = self.get_context().options.is_stress_test_gc_enabled();

        // Information about the previous collection.
        let mut emergency_collection = false;
        let mut previous_result_zero = false;

        loop {
            // Try to allocate using the slow path
            let result = if is_mutator && stress_test && *self.get_context().options.precise_stress
            {
                // If we are doing precise stress GC, we invoke the special allow_slow_once call.
                // alloc_slow_once_precise_stress() should make sure that every allocation goes
                // to the slowpath (here) so we can check the allocation bytes and decide
                // if we need to do a stress GC.

                // If we should do a stress GC now, we tell the alloc_slow_once_precise_stress()
                // so they would avoid try any thread local allocation, and directly call
                // global acquire and do a poll.
                let need_poll = is_mutator && self.get_context().gc_trigger.should_do_stress_gc();
                self.alloc_slow_once_precise_stress(size, align, offset, need_poll)
            } else {
                // If we are not doing precise stress GC, just call the normal alloc_slow_once().
                // Normal stress test only checks for stress GC in the slowpath.
                self.alloc_slow_once_traced(size, align, offset)
            };

            if !is_mutator {
                debug_assert!(!result.is_zero());
                return result;
            }

            if !result.is_zero() {
                // Report allocation success to assist OutOfMemory handling.
                if !self
                    .get_context()
                    .state
                    .allocation_success
                    .load(Ordering::Relaxed)
                {
                    self.get_context()
                        .state
                        .allocation_success
                        .store(true, Ordering::SeqCst);
                }

                // Only update the allocation bytes if we haven't failed a previous allocation in this loop
                if stress_test && self.get_context().state.is_initialized() && !previous_result_zero
                {
                    let allocated_size = if *self.get_context().options.precise_stress
                        || !self.does_thread_local_allocation()
                    {
                        // For precise stress test, or for allocators that do not have thread local buffer,
                        // we know exactly how many bytes we allocate.
                        size
                    } else {
                        // For normal stress test, we count the entire thread local buffer size as allocated.
                        crate::util::conversions::raw_align_up(
                            size,
                            self.get_thread_local_buffer_granularity(),
                        )
                    };
                    let _allocation_bytes = self
                        .get_context()
                        .state
                        .increase_allocation_bytes_by(allocated_size);

                    // This is the allocation hook for the analysis trait. If you want to call
                    // an analysis counter specific allocation hook, then here is the place to do so
                    #[cfg(feature = "analysis")]
                    if _allocation_bytes > *self.get_context().options.analysis_factor {
                        trace!(
                            "Analysis: allocation_bytes = {} more than analysis_factor = {}",
                            _allocation_bytes,
                            *self.get_context().options.analysis_factor
                        );

                        self.get_context()
                            .analysis_manager
                            .alloc_hook(size, align, offset);
                    }
                }

                return result;
            }

            // It is possible to have cases where a thread is blocked for another GC (non emergency)
            // immediately after being blocked for a GC (emergency) (e.g. in stress test), that is saying
            // the thread does not leave this loop between the two GCs. The local var 'emergency_collection'
            // was set to true after the first GC. But when we execute this check below, we just finished
            // the second GC, which is not emergency. In such case, we will give a false OOM.
            // We cannot just rely on the local var. Instead, we get the emergency collection value again,
            // and check both.
            if emergency_collection && self.get_context().state.is_emergency_collection() {
                trace!("Emergency collection");
                // Report allocation success to assist OutOfMemory handling.
                // This seems odd, but we must allow each OOM to run its course (and maybe give us back memory)
                let fail_with_oom = !self
                    .get_context()
                    .state
                    .allocation_success
                    .swap(true, Ordering::SeqCst);
                trace!("fail with oom={}", fail_with_oom);
                if fail_with_oom {
                    // Note that we throw a `HeapOutOfMemory` error here and return a null ptr back to the VM
                    trace!("Throw HeapOutOfMemory!");
                    VM::VMCollection::out_of_memory(tls, AllocationError::HeapOutOfMemory);
                    self.get_context()
                        .state
                        .allocation_success
                        .store(false, Ordering::SeqCst);
                    return result;
                }
            }

            /* This is in case a GC occurs, and our mutator context is stale.
             * In some VMs the scheduler can change the affinity between the
             * current thread and the mutator context. This is possible for
             * VMs that dynamically multiplex Java threads onto multiple mutator
             * contexts. */
            // FIXME: No good way to do this
            //current = unsafe {
            //    VMActivePlan::mutator(tls).get_allocator_from_space(space)
            //};

            // Record whether last collection was an Emergency collection. If so, we make one more
            // attempt to allocate before we signal an OOM.
            emergency_collection = self.get_context().state.is_emergency_collection();
            trace!("Got emergency collection as {}", emergency_collection);
            previous_result_zero = true;
        }
    }

    /// Single slow path allocation attempt. This is called by [`alloc_slow_inline`](Allocator::alloc_slow_inline). The
    /// implementation of this function depends on the allocator used. Generally, if an allocator
    /// supports thread local allocations, it will try to allocate more TLAB space here. If it
    /// doesn't, then (generally) the allocator simply allocates enough space for the current
    /// object.
    ///
    /// Arguments:
    /// * `size`: the allocation size in bytes.
    /// * `align`: the required alignment in bytes.
    /// * `offset` the required offset in bytes.
    fn alloc_slow_once(&mut self, size: usize, align: usize, offset: usize) -> Address;

    /// A wrapper method for [`alloc_slow_once`](Allocator::alloc_slow_once) to insert USDT tracepoints.
    ///
    /// Arguments:
    /// * `size`: the allocation size in bytes.
    /// * `align`: the required alignment in bytes.
    /// * `offset` the required offset in bytes.
    fn alloc_slow_once_traced(&mut self, size: usize, align: usize, offset: usize) -> Address {
        probe!(mmtk, alloc_slow_once_start);
        // probe! expands to an empty block on unsupported platforms
        #[allow(clippy::let_and_return)]
        let ret = self.alloc_slow_once(size, align, offset);
        probe!(mmtk, alloc_slow_once_end);
        ret
    }

    /// Single slowpath allocation attempt for stress test. When the stress factor is set (e.g. to
    /// N), we would expect for every N bytes allocated, we will trigger a stress GC.  However, for
    /// allocators that do thread local allocation, they may allocate from their thread local
    /// buffer which does not have a GC poll check, and they may even allocate with the JIT
    /// generated allocation fastpath which is unaware of stress test GC. For both cases, we are
    /// not able to guarantee a stress GC is triggered every N bytes. To solve this, when the
    /// stress factor is set, we will call this method instead of the normal alloc_slow_once(). We
    /// expect the implementation of this slow allocation will trick the fastpath so every
    /// allocation will fail in the fastpath, jump to the slow path and eventually call this method
    /// again for the actual allocation.
    ///
    /// The actual implementation about how to trick the fastpath may vary. For example, our bump
    /// pointer allocator will set the thread local buffer limit to the buffer size instead of the
    /// buffer end address. In this case, every fastpath check (cursor + size < limit) will fail,
    /// and jump to this slowpath. In the slowpath, we still allocate from the thread local buffer,
    /// and recompute the limit (remaining buffer size).
    ///
    /// If an allocator does not do thread local allocation (which returns false for
    /// does_thread_local_allocation()), it does not need to override this method. The default
    /// implementation will simply call allow_slow_once() and it will work fine for allocators that
    /// do not have thread local allocation.
    ///
    /// Arguments:
    /// * `size`: the allocation size in bytes.
    /// * `align`: the required alignment in bytes.
    /// * `offset` the required offset in bytes.
    /// * `need_poll`: if this is true, the implementation must poll for a GC, rather than
    ///   attempting to allocate from the local buffer.
    fn alloc_slow_once_precise_stress(
        &mut self,
        size: usize,
        align: usize,
        offset: usize,
        need_poll: bool,
    ) -> Address {
        // If an allocator does thread local allocation but does not override this method to
        // provide a correct implementation, we will log a warning.
        if self.does_thread_local_allocation() && need_poll {
            warn!("{} does not support stress GC (An allocator that does thread local allocation needs to implement allow_slow_once_stress_test()).", std::any::type_name::<Self>());
        }
        self.alloc_slow_once_traced(size, align, offset)
    }

    /// The [`crate::plan::Mutator`] that includes this allocator is going to be destroyed. Some allocators
    /// may need to save/transfer its thread local data to the space.
    fn on_mutator_destroy(&mut self) {
        // By default, do nothing
    }
}

impl_downcast!(Allocator<VM> where VM: VMBinding);