mmtk/util/alloc/allocator.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
use crate::global_state::GlobalState;
use crate::util::address::Address;
#[cfg(feature = "analysis")]
use crate::util::analysis::AnalysisManager;
use crate::util::heap::gc_trigger::GCTrigger;
use crate::util::options::Options;
use crate::MMTK;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use crate::policy::space::Space;
use crate::util::constants::*;
use crate::util::opaque_pointer::*;
use crate::vm::VMBinding;
use crate::vm::{ActivePlan, Collection};
use downcast_rs::Downcast;
#[repr(C)]
#[derive(Debug)]
/// A list of errors that MMTk can encounter during allocation.
pub enum AllocationError {
/// The specified heap size is too small for the given program to continue.
HeapOutOfMemory,
/// The OS is unable to mmap or acquire more memory. Critical error. MMTk expects the VM to
/// abort if such an error is thrown.
MmapOutOfMemory,
}
pub fn align_allocation_no_fill<VM: VMBinding>(
region: Address,
alignment: usize,
offset: usize,
) -> Address {
align_allocation_inner::<VM>(region, alignment, offset, VM::MIN_ALIGNMENT, false)
}
pub fn align_allocation<VM: VMBinding>(
region: Address,
alignment: usize,
offset: usize,
) -> Address {
align_allocation_inner::<VM>(region, alignment, offset, VM::MIN_ALIGNMENT, true)
}
pub fn align_allocation_inner<VM: VMBinding>(
region: Address,
alignment: usize,
offset: usize,
known_alignment: usize,
fillalignmentgap: bool,
) -> Address {
debug_assert!(known_alignment >= VM::MIN_ALIGNMENT);
// Make sure MIN_ALIGNMENT is reasonable.
#[allow(clippy::assertions_on_constants)]
{
debug_assert!(VM::MIN_ALIGNMENT >= BYTES_IN_INT);
}
debug_assert!(!(fillalignmentgap && region.is_zero()));
debug_assert!(alignment <= VM::MAX_ALIGNMENT);
debug_assert!(region.is_aligned_to(VM::ALLOC_END_ALIGNMENT));
debug_assert!((alignment & (VM::MIN_ALIGNMENT - 1)) == 0);
debug_assert!((offset & (VM::MIN_ALIGNMENT - 1)) == 0);
// No alignment ever required.
if alignment <= known_alignment || VM::MAX_ALIGNMENT <= VM::MIN_ALIGNMENT {
return region;
}
// May require an alignment
let region_isize = region.as_usize() as isize;
let mask = (alignment - 1) as isize; // fromIntSignExtend
let neg_off: isize = -(offset as isize); // fromIntSignExtend
// TODO: Consider using neg_off.wrapping_sub_unsigned(region.as_usize()), and we can remove region_isize.
// This requires Rust 1.66.0+.
let delta = neg_off.wrapping_sub(region_isize) & mask; // Use wrapping_sub to avoid overflow
if fillalignmentgap && (VM::ALIGNMENT_VALUE != 0) {
fill_alignment_gap::<VM>(region, region + delta);
}
region + delta
}
/// Fill the specified region with the alignment value.
pub fn fill_alignment_gap<VM: VMBinding>(immut_start: Address, end: Address) {
let mut start = immut_start;
if VM::MAX_ALIGNMENT - VM::MIN_ALIGNMENT == BYTES_IN_INT {
// At most a single hole
if end - start != 0 {
unsafe {
start.store(VM::ALIGNMENT_VALUE);
}
}
} else {
while start < end {
unsafe {
start.store(VM::ALIGNMENT_VALUE);
}
start += BYTES_IN_INT;
}
}
}
pub fn get_maximum_aligned_size<VM: VMBinding>(size: usize, alignment: usize) -> usize {
get_maximum_aligned_size_inner::<VM>(size, alignment, VM::MIN_ALIGNMENT)
}
pub fn get_maximum_aligned_size_inner<VM: VMBinding>(
size: usize,
alignment: usize,
known_alignment: usize,
) -> usize {
trace!(
"size={}, alignment={}, known_alignment={}, MIN_ALIGNMENT={}",
size,
alignment,
known_alignment,
VM::MIN_ALIGNMENT
);
debug_assert!(size == size & !(known_alignment - 1));
debug_assert!(known_alignment >= VM::MIN_ALIGNMENT);
if VM::MAX_ALIGNMENT <= VM::MIN_ALIGNMENT || alignment <= known_alignment {
size
} else {
size + alignment - known_alignment
}
}
/// The context an allocator needs to access in order to perform allocation.
pub struct AllocatorContext<VM: VMBinding> {
pub state: Arc<GlobalState>,
pub options: Arc<Options>,
pub gc_trigger: Arc<GCTrigger<VM>>,
#[cfg(feature = "analysis")]
pub analysis_manager: Arc<AnalysisManager<VM>>,
}
impl<VM: VMBinding> AllocatorContext<VM> {
pub fn new(mmtk: &MMTK<VM>) -> Self {
Self {
state: mmtk.state.clone(),
options: mmtk.options.clone(),
gc_trigger: mmtk.gc_trigger.clone(),
#[cfg(feature = "analysis")]
analysis_manager: mmtk.analysis_manager.clone(),
}
}
}
/// A trait which implements allocation routines. Every allocator needs to implements this trait.
pub trait Allocator<VM: VMBinding>: Downcast {
/// Return the [`VMThread`] associated with this allocator instance.
fn get_tls(&self) -> VMThread;
/// Return the [`Space`](src/policy/space/Space) instance associated with this allocator instance.
fn get_space(&self) -> &'static dyn Space<VM>;
/// Return the context for the allocator.
fn get_context(&self) -> &AllocatorContext<VM>;
/// Return if this allocator can do thread local allocation. If an allocator does not do thread
/// local allocation, each allocation will go to slowpath and will have a check for GC polls.
fn does_thread_local_allocation(&self) -> bool;
/// Return at which granularity the allocator acquires memory from the global space and use
/// them as thread local buffer. For example, the [`BumpAllocator`](crate::util::alloc::BumpAllocator) acquires memory at 32KB
/// blocks. Depending on the actual size for the current object, they always acquire memory of
/// N*32KB (N>=1). Thus the [`BumpAllocator`](crate::util::alloc::BumpAllocator) returns 32KB for this method. Only allocators
/// that do thread local allocation need to implement this method.
fn get_thread_local_buffer_granularity(&self) -> usize {
assert!(self.does_thread_local_allocation(), "An allocator that does not thread local allocation does not have a buffer granularity.");
unimplemented!()
}
/// An allocation attempt. The implementation of this function depends on the allocator used.
/// If an allocator supports thread local allocations, then the allocation will be serviced
/// from its TLAB, otherwise it will default to using the slowpath, i.e. [`alloc_slow`](Allocator::alloc_slow).
///
/// Note that in the case where the VM is out of memory, we invoke
/// [`Collection::out_of_memory`] to inform the binding and then return a null pointer back to
/// it. We have no assumptions on whether the VM will continue executing or abort immediately.
///
/// An allocator needs to make sure the object reference for the returned address is in the same
/// chunk as the returned address (so the side metadata and the SFT for an object reference is valid).
/// See [`crate::util::alloc::object_ref_guard`](util/alloc/object_ref_guard).
///
/// Arguments:
/// * `size`: the allocation size in bytes.
/// * `align`: the required alignment in bytes.
/// * `offset` the required offset in bytes.
fn alloc(&mut self, size: usize, align: usize, offset: usize) -> Address;
/// Slowpath allocation attempt. This function is explicitly not inlined for performance
/// considerations.
///
/// Arguments:
/// * `size`: the allocation size in bytes.
/// * `align`: the required alignment in bytes.
/// * `offset` the required offset in bytes.
#[inline(never)]
fn alloc_slow(&mut self, size: usize, align: usize, offset: usize) -> Address {
self.alloc_slow_inline(size, align, offset)
}
/// Slowpath allocation attempt. This function executes the actual slowpath allocation. A
/// slowpath allocation in MMTk attempts to allocate the object using the per-allocator
/// definition of [`alloc_slow_once`](Allocator::alloc_slow_once). This function also accounts for increasing the
/// allocation bytes in order to support stress testing. In case precise stress testing is
/// being used, the [`alloc_slow_once_precise_stress`](Allocator::alloc_slow_once_precise_stress) function is used instead.
///
/// Note that in the case where the VM is out of memory, we invoke
/// [`Collection::out_of_memory`] with a [`AllocationError::HeapOutOfMemory`] error to inform
/// the binding and then return a null pointer back to it. We have no assumptions on whether
/// the VM will continue executing or abort immediately on a
/// [`AllocationError::HeapOutOfMemory`] error.
///
/// Arguments:
/// * `size`: the allocation size in bytes.
/// * `align`: the required alignment in bytes.
/// * `offset` the required offset in bytes.
fn alloc_slow_inline(&mut self, size: usize, align: usize, offset: usize) -> Address {
let tls = self.get_tls();
let is_mutator = VM::VMActivePlan::is_mutator(tls);
let stress_test = self.get_context().options.is_stress_test_gc_enabled();
// Information about the previous collection.
let mut emergency_collection = false;
let mut previous_result_zero = false;
loop {
// Try to allocate using the slow path
let result = if is_mutator && stress_test && *self.get_context().options.precise_stress
{
// If we are doing precise stress GC, we invoke the special allow_slow_once call.
// alloc_slow_once_precise_stress() should make sure that every allocation goes
// to the slowpath (here) so we can check the allocation bytes and decide
// if we need to do a stress GC.
// If we should do a stress GC now, we tell the alloc_slow_once_precise_stress()
// so they would avoid try any thread local allocation, and directly call
// global acquire and do a poll.
let need_poll = is_mutator && self.get_context().gc_trigger.should_do_stress_gc();
self.alloc_slow_once_precise_stress(size, align, offset, need_poll)
} else {
// If we are not doing precise stress GC, just call the normal alloc_slow_once().
// Normal stress test only checks for stress GC in the slowpath.
self.alloc_slow_once_traced(size, align, offset)
};
if !is_mutator {
debug_assert!(!result.is_zero());
return result;
}
if !result.is_zero() {
// Report allocation success to assist OutOfMemory handling.
if !self
.get_context()
.state
.allocation_success
.load(Ordering::Relaxed)
{
self.get_context()
.state
.allocation_success
.store(true, Ordering::SeqCst);
}
// Only update the allocation bytes if we haven't failed a previous allocation in this loop
if stress_test && self.get_context().state.is_initialized() && !previous_result_zero
{
let allocated_size = if *self.get_context().options.precise_stress
|| !self.does_thread_local_allocation()
{
// For precise stress test, or for allocators that do not have thread local buffer,
// we know exactly how many bytes we allocate.
size
} else {
// For normal stress test, we count the entire thread local buffer size as allocated.
crate::util::conversions::raw_align_up(
size,
self.get_thread_local_buffer_granularity(),
)
};
let _allocation_bytes = self
.get_context()
.state
.increase_allocation_bytes_by(allocated_size);
// This is the allocation hook for the analysis trait. If you want to call
// an analysis counter specific allocation hook, then here is the place to do so
#[cfg(feature = "analysis")]
if _allocation_bytes > *self.get_context().options.analysis_factor {
trace!(
"Analysis: allocation_bytes = {} more than analysis_factor = {}",
_allocation_bytes,
*self.get_context().options.analysis_factor
);
self.get_context()
.analysis_manager
.alloc_hook(size, align, offset);
}
}
return result;
}
// It is possible to have cases where a thread is blocked for another GC (non emergency)
// immediately after being blocked for a GC (emergency) (e.g. in stress test), that is saying
// the thread does not leave this loop between the two GCs. The local var 'emergency_collection'
// was set to true after the first GC. But when we execute this check below, we just finished
// the second GC, which is not emergency. In such case, we will give a false OOM.
// We cannot just rely on the local var. Instead, we get the emergency collection value again,
// and check both.
if emergency_collection && self.get_context().state.is_emergency_collection() {
trace!("Emergency collection");
// Report allocation success to assist OutOfMemory handling.
// This seems odd, but we must allow each OOM to run its course (and maybe give us back memory)
let fail_with_oom = !self
.get_context()
.state
.allocation_success
.swap(true, Ordering::SeqCst);
trace!("fail with oom={}", fail_with_oom);
if fail_with_oom {
// Note that we throw a `HeapOutOfMemory` error here and return a null ptr back to the VM
trace!("Throw HeapOutOfMemory!");
VM::VMCollection::out_of_memory(tls, AllocationError::HeapOutOfMemory);
self.get_context()
.state
.allocation_success
.store(false, Ordering::SeqCst);
return result;
}
}
/* This is in case a GC occurs, and our mutator context is stale.
* In some VMs the scheduler can change the affinity between the
* current thread and the mutator context. This is possible for
* VMs that dynamically multiplex Java threads onto multiple mutator
* contexts. */
// FIXME: No good way to do this
//current = unsafe {
// VMActivePlan::mutator(tls).get_allocator_from_space(space)
//};
// Record whether last collection was an Emergency collection. If so, we make one more
// attempt to allocate before we signal an OOM.
emergency_collection = self.get_context().state.is_emergency_collection();
trace!("Got emergency collection as {}", emergency_collection);
previous_result_zero = true;
}
}
/// Single slow path allocation attempt. This is called by [`alloc_slow_inline`](Allocator::alloc_slow_inline). The
/// implementation of this function depends on the allocator used. Generally, if an allocator
/// supports thread local allocations, it will try to allocate more TLAB space here. If it
/// doesn't, then (generally) the allocator simply allocates enough space for the current
/// object.
///
/// Arguments:
/// * `size`: the allocation size in bytes.
/// * `align`: the required alignment in bytes.
/// * `offset` the required offset in bytes.
fn alloc_slow_once(&mut self, size: usize, align: usize, offset: usize) -> Address;
/// A wrapper method for [`alloc_slow_once`](Allocator::alloc_slow_once) to insert USDT tracepoints.
///
/// Arguments:
/// * `size`: the allocation size in bytes.
/// * `align`: the required alignment in bytes.
/// * `offset` the required offset in bytes.
fn alloc_slow_once_traced(&mut self, size: usize, align: usize, offset: usize) -> Address {
probe!(mmtk, alloc_slow_once_start);
// probe! expands to an empty block on unsupported platforms
#[allow(clippy::let_and_return)]
let ret = self.alloc_slow_once(size, align, offset);
probe!(mmtk, alloc_slow_once_end);
ret
}
/// Single slowpath allocation attempt for stress test. When the stress factor is set (e.g. to
/// N), we would expect for every N bytes allocated, we will trigger a stress GC. However, for
/// allocators that do thread local allocation, they may allocate from their thread local
/// buffer which does not have a GC poll check, and they may even allocate with the JIT
/// generated allocation fastpath which is unaware of stress test GC. For both cases, we are
/// not able to guarantee a stress GC is triggered every N bytes. To solve this, when the
/// stress factor is set, we will call this method instead of the normal alloc_slow_once(). We
/// expect the implementation of this slow allocation will trick the fastpath so every
/// allocation will fail in the fastpath, jump to the slow path and eventually call this method
/// again for the actual allocation.
///
/// The actual implementation about how to trick the fastpath may vary. For example, our bump
/// pointer allocator will set the thread local buffer limit to the buffer size instead of the
/// buffer end address. In this case, every fastpath check (cursor + size < limit) will fail,
/// and jump to this slowpath. In the slowpath, we still allocate from the thread local buffer,
/// and recompute the limit (remaining buffer size).
///
/// If an allocator does not do thread local allocation (which returns false for
/// does_thread_local_allocation()), it does not need to override this method. The default
/// implementation will simply call allow_slow_once() and it will work fine for allocators that
/// do not have thread local allocation.
///
/// Arguments:
/// * `size`: the allocation size in bytes.
/// * `align`: the required alignment in bytes.
/// * `offset` the required offset in bytes.
/// * `need_poll`: if this is true, the implementation must poll for a GC, rather than
/// attempting to allocate from the local buffer.
fn alloc_slow_once_precise_stress(
&mut self,
size: usize,
align: usize,
offset: usize,
need_poll: bool,
) -> Address {
// If an allocator does thread local allocation but does not override this method to
// provide a correct implementation, we will log a warning.
if self.does_thread_local_allocation() && need_poll {
warn!("{} does not support stress GC (An allocator that does thread local allocation needs to implement allow_slow_once_stress_test()).", std::any::type_name::<Self>());
}
self.alloc_slow_once_traced(size, align, offset)
}
/// The [`crate::plan::Mutator`] that includes this allocator is going to be destroyed. Some allocators
/// may need to save/transfer its thread local data to the space.
fn on_mutator_destroy(&mut self) {
// By default, do nothing
}
}
impl_downcast!(Allocator<VM> where VM: VMBinding);