1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
//! This is a generic module to work with metadata including side metadata and in-object metadata.
//!
//! This module is designed to enable the implementation of a wide range of GC algorithms for VMs with various combinations of in-object and on-side space for GC-specific metadata (e.g. forwarding bits, marking bit, logging bit, etc.).
//!
//! The new metadata design differentiates per-object metadata (e.g. forwarding-bits and marking-bit) from other types of metadata including per-address (e.g. VO bit) and per-X (where X != object size), because the per-object metadata can optionally be kept in the object headers.
//!
//! MMTk acknowledges the VM-dependant nature of the in-object metadata, and asks the VM bindings to contribute by implementing the related parts in the ['ObjectModel'](crate::vm::ObjectModel).
//!
//!
//! # Side Metadata
//!
//! ## Design
//!
//! MMTk side metadata is designed to be **generic**, and **space-** and **time-** efficient.
//!
//! It aims to support two categories of metadata:
//!
//! 1. **Global** metadata bits which are plan-specific but common to all policies, and
//! 2. **Policy-specific** bits which are only used exclusively by certain policies.
//!
//! To support these categories, MMTk metadata provides the following features:
//!
//! 1. The granularity of the source data (minimum data size) is configurable to $2^n$ bytes, where $n >= 0$.
//! 2. The number of metadata bits per source data unit is configurable to $2^m$ bits, where $m >= 0$.
//! 3. The total number of metadata bit-sets is constrained by the worst-case ratio of global and policy-specific metadata.
//! 4. Metadata space is only allocated on demand.
//! 5. Bulk-zeroing of metadata bits should be possible. For this, the memory space for each metadata bit-set is contiguous per chunk.
//!
//! ### 64-bits targets
//!
//! In 64-bits targets, each MMTk side metadata bit-set is organized as a contiguous space.
//! The base address for both the global and the local side metadata are constants (e.g. `GLOBAL_SIDE_METADATA_BASE_ADDRESS` and `LOCAL_SIDE_METADATA_BASE_ADDRESS`).
//!
//! In this case, a schematic of the local and global side metadata looks like:
//!
//! _______________________________ <= global-1 = GLOBAL_SIDE_METADATA_BASE_ADDRESS
//! | |
//! | Global-1 |
//! |_____________________________| <= global-2 = global-1 +
//! | | metadata_address_range_size(global-1)
//! | Global-2 |
//! | |
//! |_____________________________| <= global-3 = global-2 +
//! | | metadata_address_range_size(global-2)
//! | Not Mapped |
//! | |
//! |_____________________________| <= global-end = GLOBAL_SIDE_METADATA_BASE_ADDRESS +
//! | | MAX_HEAP_SIZE * Global_WCR
//! | |
//! | |
//! |_____________________________| <= local-1 = LOCAL_SIDE_METADATA_BASE_ADDRESS
//! | |
//! | PolicySpecific-1 |
//! | |
//! |_____________________________| <= local-2 = local-1 + metadata_address_range_size(local-1)
//! | |
//! | PolicySpecific-2 |
//! | |
//! |_____________________________| <= local-3 = local-2 + metadata_address_range_size(local-2)
//! | |
//! | Not Mapped |
//! | |
//! | |
//! |_____________________________| <= local-end = LOCAL_SIDE_METADATA_BASE_ADDRESS +
//! MAX_HEAP_SIZE * PolicySpecific_WCR
//!
//! ### 32-bits targets
//!
//! In 32-bits targets, the global side metadata is organized the same way as 64-bits, but the policy-specific side metadata is organized per chunk of data (each chunk is managed exclusively by one policy).
//! This means, when a new chunk is mapped, the policy-specific side metadata for the whole chunk is also mapped.
//!
//! In this case, a schematic of the local and global side metadata looks like:
//!
//! _______________________________ <= global-1 = GLOBAL_SIDE_METADATA_BASE_ADDRESS(e.g. 0x1000_0000)
//! | |
//! | Global-1 |
//! |_____________________________| <= global-2 = global-1 +
//! | | metadata_address_range_size(global-1)
//! | Global-2 |
//! | |
//! |_____________________________| <= global-3 = global-2 +
//! | | metadata_address_range_size(global-2)
//! | Not Mapped |
//! | |
//! |_____________________________| <= global-end = GLOBAL_SIDE_METADATA_BASE_ADDRESS +
//! | | MAX_HEAP_SIZE * Global_WCR
//! | |
//! | |
//! |_____________________________| <= LOCAL_SIDE_METADATA_BASE_ADDRESS
//! | |
//! | PolicySpecific |
//! | |
//! | |
//! | |
//! |_____________________________| <= local-end = LOCAL_SIDE_METADATA_BASE_ADDRESS +
//! MAX_HEAP_SIZE * PolicySpecific_WCR
//!
//!
//! And inside the PolicySpecific space, each per chunk policy-specific side metadata looks like:
//!
//! _______________________________ <= offset-1 = 0x0
//! | |
//! | Local-1 |
//! |_____________________________| <= offset-2 = metadata_bytes_per_chunk(Local-1)
//! | |
//! | Local-2 |
//! | |
//! |_____________________________| <= offset-g3 = offset-g2 + metadata_bytes_per_chunk(Local-2)
//! | |
//! | Not Mapped |
//! | |
//! |_____________________________| <= 4MB * PolicySpecific_WCR
//!
//!
//!
//!
//! # How to Use
//!
//! ## Declare metadata specs
//!
//! For each global metadata bit-set, a constant instance of the `MetadataSpec` struct should be created.
//!
//! If the metadata is per-object and may possibly reside in objects, the constant instance should be created in the VM's ObjectModel.
//! For instance, the forwarding-bits metadata spec should be assigned to `LOCAL_FORWARDING_BITS_SPEC` in [`ObjectModel`](crate::vm::ObjectModel).
//! The VM binding decides whether to put these metadata bit-sets in-objects or on-side.
//!
//! For other metadata bit-sets, constant `MetadataSpec` instances, created inside MMTk by plans/policies, are used in conjunction with the access functions from the current module.
//!
//! Example:
//!
//! For the first global side metadata bit-set:
//!
//! ```
//! const GLOBAL_META_1: MetadataSpec = MetadataSpec {
//! is_side_metadata: true,
//! is_global: true,
//! offset: GLOBAL_SIDE_METADATA_BASE_ADDRESS,
//! log_num_of_bits: b1,
//! log_bytes_in_region: s1,
//! };
//! ```
//!
//! Here, the number of bits per data is $2^b1$, and the minimum object size is $2^s1$.
//! The `offset` is actually the base address for a global side metadata bit-set.
//! For the first bit-set, `offset` is `GLOBAL_SIDE_METADATA_BASE_ADDRESS`.
//!
//! Now, to add a second side metadata bit-set, offset needs to be calculated based-on the first global bit-set:
//!
//! ```
//! const GLOBAL_META_2: MetadataSpec = MetadataSpec {
//! is_side_metadata: true,
//! is_global: true,
//! offset: GLOBAL_META_1.offset + metadata_address_range_size(GLOBAL_META_1)
//! log_num_of_bits: b2,
//! log_bytes_in_region: s2,
//! };
//! ```
//!
//! where `metadata_address_range_size` is a const function which calculates the total metadata space size of a contiguous side metadata bit-set based-on `s` and `b`.
//!
//! The policy-specific side metadata for 64-bits targets, and the global side metadata for 32-bits targets are used on the same way, except that their base addresses are different.
//!
//! Policy-specific side metadata for 32-bits target is slightly different, because it is chunk-based.
//!
//! For the first local side metadata bit-set:
//!
//! ```
//! const LOCAL_META_1: MetadataSpec = MetadataSpec {
//! is_side_metadata: true,
//! is_global: false,
//! offset: 0,
//! log_num_of_bits: b1,
//! log_bytes_in_region: s1,
//! };
//! ```
//!
//! Here, the `offset` is actually the inter-chunk offset of the side metadata from the start of the current side metadata chunk.
//!
//! Now, to add a second side metadata bit-set, offset needs to be calculated based-on the first global bit-set:
//!
//! ```
//! const LOCAL_META_2: MetadataSpec = MetadataSpec {
//! is_side_metadata: true,
//! is_global: false,
//! offset: LOCAL_META_1.offset + metadata_bytes_per_chunk(LOCAL_META_1)
//! log_num_of_bits: b2,
//! log_bytes_in_region: s2,
//! };
//! ```
//!
//! So far, we declared each metadata specs.
//! We can now use the in-object metadata through the access functions in the VM bindings ObjectModel.
//! For side metadata, the next step is to allocate metadata space.
//!
//!
//! ## Create and allocate side metadata for spaces
//!
//! A space needs to know all global metadata specs and its own policy-specific/local metadata specs in order to calculate and allocate metadata space.
//! When a space is created by a plan (e.g. SemiSpace::new), the plan can create its global specs by `MetadataContext::new_global_specs(&[GLOBAL_META_1, GLOBAL_META_2])`. Then,
//! the global specs are passed to each space that the plan creates.
//!
//! Each space will then combine the global specs and its own local specs to create a SideMetadataContext.
//! Allocating side metadata space and accounting its memory usage is done by `SideMetadata`. If a space uses `CommonSpace`, `CommonSpace` will create `SideMetadata` and manage
//! reserving and allocating metadata space when necessary. If a space does not use `CommonSpace`, it should create `SideMetadata` itself and manage allocating metadata space
//! as its own responsibility.
//!
//! ## Access side metadata
//!
//! After mapping the metadata space, the following operations can be performed with a specific metadata spec:
//!
//! 1. atomic load
//! 2. atomic store
//! 3. atomic compare-and-exchange
//! 4. atomic fetch-and-add
//! 5. atomic fetch-and-sub
//! 6. load (non-atomic)
//! 7. store (non-atomic)
//! 8. bulk zeroing
//!
mod global;
pub mod header_metadata;
mod metadata_val_traits;
pub mod side_metadata;
pub mod vo_bit;
pub use metadata_val_traits::*;
pub(crate) mod log_bit;
pub(crate) mod mark_bit;
pub(crate) mod pin_bit;
pub use global::*;