1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
//! The global part of a plan implementation.
use super::PlanConstraints;
use crate::global_state::GlobalState;
use crate::mmtk::MMTK;
use crate::plan::tracing::ObjectQueue;
use crate::plan::Mutator;
use crate::policy::immortalspace::ImmortalSpace;
use crate::policy::largeobjectspace::LargeObjectSpace;
use crate::policy::space::{PlanCreateSpaceArgs, Space};
#[cfg(feature = "vm_space")]
use crate::policy::vmspace::VMSpace;
use crate::scheduler::*;
use crate::util::alloc::allocators::AllocatorSelector;
use crate::util::copy::{CopyConfig, GCWorkerCopyContext};
use crate::util::heap::gc_trigger::GCTrigger;
use crate::util::heap::gc_trigger::SpaceStats;
use crate::util::heap::layout::Mmapper;
use crate::util::heap::layout::VMMap;
use crate::util::heap::HeapMeta;
use crate::util::heap::VMRequest;
use crate::util::metadata::side_metadata::SideMetadataSanity;
use crate::util::metadata::side_metadata::SideMetadataSpec;
use crate::util::options::Options;
use crate::util::options::PlanSelector;
use crate::util::statistics::stats::Stats;
use crate::util::{conversions, ObjectReference};
use crate::util::{VMMutatorThread, VMWorkerThread};
use crate::vm::*;
use downcast_rs::Downcast;
use enum_map::EnumMap;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use mmtk_macros::{HasSpaces, PlanTraceObject};
pub fn create_mutator<VM: VMBinding>(
tls: VMMutatorThread,
mmtk: &'static MMTK<VM>,
) -> Box<Mutator<VM>> {
Box::new(match *mmtk.options.plan {
PlanSelector::NoGC => crate::plan::nogc::mutator::create_nogc_mutator(tls, mmtk),
PlanSelector::SemiSpace => crate::plan::semispace::mutator::create_ss_mutator(tls, mmtk),
PlanSelector::GenCopy => {
crate::plan::generational::copying::mutator::create_gencopy_mutator(tls, mmtk)
}
PlanSelector::GenImmix => {
crate::plan::generational::immix::mutator::create_genimmix_mutator(tls, mmtk)
}
PlanSelector::MarkSweep => crate::plan::marksweep::mutator::create_ms_mutator(tls, mmtk),
PlanSelector::Immix => crate::plan::immix::mutator::create_immix_mutator(tls, mmtk),
PlanSelector::PageProtect => {
crate::plan::pageprotect::mutator::create_pp_mutator(tls, mmtk)
}
PlanSelector::MarkCompact => {
crate::plan::markcompact::mutator::create_markcompact_mutator(tls, mmtk)
}
PlanSelector::StickyImmix => {
crate::plan::sticky::immix::mutator::create_stickyimmix_mutator(tls, mmtk)
}
})
}
pub fn create_plan<VM: VMBinding>(
plan: PlanSelector,
args: CreateGeneralPlanArgs<VM>,
) -> Box<dyn Plan<VM = VM>> {
let plan = match plan {
PlanSelector::NoGC => {
Box::new(crate::plan::nogc::NoGC::new(args)) as Box<dyn Plan<VM = VM>>
}
PlanSelector::SemiSpace => {
Box::new(crate::plan::semispace::SemiSpace::new(args)) as Box<dyn Plan<VM = VM>>
}
PlanSelector::GenCopy => Box::new(crate::plan::generational::copying::GenCopy::new(args))
as Box<dyn Plan<VM = VM>>,
PlanSelector::GenImmix => Box::new(crate::plan::generational::immix::GenImmix::new(args))
as Box<dyn Plan<VM = VM>>,
PlanSelector::MarkSweep => {
Box::new(crate::plan::marksweep::MarkSweep::new(args)) as Box<dyn Plan<VM = VM>>
}
PlanSelector::Immix => {
Box::new(crate::plan::immix::Immix::new(args)) as Box<dyn Plan<VM = VM>>
}
PlanSelector::PageProtect => {
Box::new(crate::plan::pageprotect::PageProtect::new(args)) as Box<dyn Plan<VM = VM>>
}
PlanSelector::MarkCompact => {
Box::new(crate::plan::markcompact::MarkCompact::new(args)) as Box<dyn Plan<VM = VM>>
}
PlanSelector::StickyImmix => {
Box::new(crate::plan::sticky::immix::StickyImmix::new(args)) as Box<dyn Plan<VM = VM>>
}
};
// We have created Plan in the heap, and we won't explicitly move it.
// Each space now has a fixed address for its lifetime. It is safe now to initialize SFT.
let sft_map: &mut dyn crate::policy::sft_map::SFTMap =
unsafe { crate::mmtk::SFT_MAP.get_mut() }.as_mut();
plan.for_each_space(&mut |s| {
sft_map.notify_space_creation(s.as_sft());
s.initialize_sft(sft_map);
});
plan
}
/// Create thread local GC worker.
pub fn create_gc_worker_context<VM: VMBinding>(
tls: VMWorkerThread,
mmtk: &'static MMTK<VM>,
) -> GCWorkerCopyContext<VM> {
GCWorkerCopyContext::<VM>::new(tls, mmtk, mmtk.get_plan().create_copy_config())
}
/// A plan describes the global core functionality for all memory management schemes.
/// All global MMTk plans should implement this trait.
///
/// The global instance defines and manages static resources
/// (such as memory and virtual memory resources).
///
/// Constructor:
///
/// For the constructor of a new plan, there are a few things the constructor _must_ do
/// (please check existing plans and see what they do in the constructor):
/// 1. Create a HeapMeta, and use this HeapMeta to initialize all the spaces.
/// 2. Create a vector of all the side metadata specs with `SideMetadataContext::new_global_specs()`,
/// the parameter is a vector of global side metadata specs that are specific to the plan.
/// 3. Initialize all the spaces the plan uses with the heap meta, and the global metadata specs vector.
/// 4. Invoke the `verify_side_metadata_sanity()` method of the plan.
/// It will create a `SideMetadataSanity` object, and invoke verify_side_metadata_sanity() for each space (or
/// invoke verify_side_metadata_sanity() in `CommonPlan`/`BasePlan` for the spaces in the common/base plan).
///
/// Methods in this trait:
///
/// Only methods that will be overridden by each specific plan should be included in this trait. The trait may
/// provide a default implementation, and each plan can override the implementation. For methods that won't be
/// overridden, we should implement those methods in BasePlan (or CommonPlan) and call them from there instead.
/// We should avoid having methods with the same name in both Plan and BasePlan, as this may confuse people, and
/// they may call a wrong method by mistake.
// TODO: Some methods that are not overriden can be moved from the trait to BasePlan.
pub trait Plan: 'static + HasSpaces + Sync + Downcast {
/// Get the plan constraints for the plan.
/// This returns a non-constant value. A constant value can be found in each plan's module if needed.
fn constraints(&self) -> &'static PlanConstraints;
/// Create a copy config for this plan. A copying GC plan MUST override this method,
/// and provide a valid config.
fn create_copy_config(&'static self) -> CopyConfig<Self::VM> {
// Use the empty default copy config for non copying GC.
CopyConfig::default()
}
/// Get a immutable reference to the base plan. `BasePlan` is included by all the MMTk GC plans.
fn base(&self) -> &BasePlan<Self::VM>;
/// Get a mutable reference to the base plan. `BasePlan` is included by all the MMTk GC plans.
fn base_mut(&mut self) -> &mut BasePlan<Self::VM>;
/// Schedule work for the upcoming GC.
fn schedule_collection(&'static self, _scheduler: &GCWorkScheduler<Self::VM>);
/// Get the common plan. CommonPlan is included by most of MMTk GC plans.
fn common(&self) -> &CommonPlan<Self::VM> {
panic!("Common Plan not handled!")
}
/// Return a reference to `GenerationalPlan` to allow
/// access methods specific to generational plans if the plan is a generational plan.
fn generational(
&self,
) -> Option<&dyn crate::plan::generational::global::GenerationalPlan<VM = Self::VM>> {
None
}
/// Get the current run time options.
fn options(&self) -> &Options {
&self.base().options
}
/// Get the allocator mapping between [`crate::AllocationSemantics`] and [`crate::util::alloc::AllocatorSelector`].
/// This defines what space this plan will allocate objects into for different semantics.
fn get_allocator_mapping(&self) -> &'static EnumMap<AllocationSemantics, AllocatorSelector>;
/// Prepare the plan before a GC. This is invoked in an initial step in the GC.
/// This is invoked once per GC by one worker thread. `tls` is the worker thread that executes this method.
fn prepare(&mut self, tls: VMWorkerThread);
/// Prepare a worker for a GC. Each worker has its own prepare method. This hook is for plan-specific
/// per-worker preparation. This method is invoked once per worker by the worker thread passed as the argument.
fn prepare_worker(&self, _worker: &mut GCWorker<Self::VM>) {}
/// Release the plan after transitive closure. A plan can implement this method to call each policy's release,
/// or create any work packet that should be done in release.
/// This is invoked once per GC by one worker thread. `tls` is the worker thread that executes this method.
fn release(&mut self, tls: VMWorkerThread);
/// Inform the plan about the end of a GC. It is guaranteed that there is no further work for this GC.
/// This is invoked once per GC by one worker thread. `tls` is the worker thread that executes this method.
fn end_of_gc(&mut self, _tls: VMWorkerThread) {}
/// Notify the plan that an emergency collection will happen. The plan should try to free as much memory as possible.
/// The default implementation will force a full heap collection for generational plans.
fn notify_emergency_collection(&self) {
if let Some(gen) = self.generational() {
gen.force_full_heap_collection();
}
}
/// Ask the plan if they would trigger a GC. If MMTk is in charge of triggering GCs, this method is called
/// periodically during allocation. However, MMTk may delegate the GC triggering decision to the runtime,
/// in which case, this method may not be called. This method returns true to trigger a collection.
///
/// # Arguments
/// * `space_full`: the allocation to a specific space failed, must recover pages within 'space'.
/// * `space`: an option to indicate if there is a space that has failed in an allocation.
fn collection_required(&self, space_full: bool, space: Option<SpaceStats<Self::VM>>) -> bool;
// Note: The following methods are about page accounting. The default implementation should
// work fine for non-copying plans. For copying plans, the plan should override any of these methods
// if necessary.
/// Get the number of pages that are reserved, including pages used by MMTk spaces, pages that
/// will be used (e.g. for copying), and live pages allocated outside MMTk spaces as reported
/// by the VM binding.
fn get_reserved_pages(&self) -> usize {
let used_pages = self.get_used_pages();
let collection_reserve = self.get_collection_reserved_pages();
let vm_live_bytes = <Self::VM as VMBinding>::VMCollection::vm_live_bytes();
// Note that `vm_live_bytes` may not be the exact number of bytes in whole pages. The VM
// binding is allowed to return an approximate value if it is expensive or impossible to
// compute the exact number of pages occupied.
let vm_live_pages = conversions::bytes_to_pages_up(vm_live_bytes);
let total = used_pages + collection_reserve + vm_live_pages;
trace!(
"Reserved pages = {}, used pages: {}, collection reserve: {}, VM live pages: {}",
total,
used_pages,
collection_reserve,
vm_live_pages,
);
total
}
/// Get the total number of pages for the heap.
fn get_total_pages(&self) -> usize {
self.base()
.gc_trigger
.policy
.get_current_heap_size_in_pages()
}
/// Get the number of pages that are still available for use. The available pages
/// should always be positive or 0.
fn get_available_pages(&self) -> usize {
let reserved_pages = self.get_reserved_pages();
let total_pages = self.get_total_pages();
// It is possible that the reserved pages is larger than the total pages so we are doing
// a saturating subtraction to make sure we return a non-negative number.
// For example,
// 1. our GC trigger checks if reserved pages is more than total pages.
// 2. when the heap is almost full of live objects (such as in the case of an OOM) and we are doing a copying GC, it is possible
// the reserved pages is larger than total pages after the copying GC (the reserved pages after a GC
// may be larger than the reserved pages before a GC, as we may end up using more memory for thread local
// buffers for copy allocators).
let available_pages = total_pages.saturating_sub(reserved_pages);
trace!(
"Total pages = {}, reserved pages = {}, available pages = {}",
total_pages,
reserved_pages,
available_pages,
);
available_pages
}
/// Get the number of pages that are reserved for collection. By default, we return 0.
/// For copying plans, they need to override this and calculate required pages to complete
/// a copying GC.
fn get_collection_reserved_pages(&self) -> usize {
0
}
/// Get the number of pages that are used.
fn get_used_pages(&self) -> usize;
/// Get the number of pages that are NOT used. This is clearly different from available pages.
/// Free pages are unused, but some of them may have been reserved for some reason.
fn get_free_pages(&self) -> usize {
self.get_total_pages() - self.get_used_pages()
}
/// Return whether last GC was an exhaustive attempt to collect the heap.
/// For example, for generational GCs, minor collection is not an exhaustive collection.
/// For example, for Immix, fast collection (no defragmentation) is not an exhaustive collection.
fn last_collection_was_exhaustive(&self) -> bool {
true
}
/// Return whether the current GC may move any object. The VM binding can make use of this
/// information and choose to or not to update some data structures that record the addresses
/// of objects.
///
/// This function is callable during a GC. From the VM binding's point of view, the information
/// of whether the current GC moves object or not is available since `Collection::stop_mutators`
/// is called, and remains available until (but not including) `resume_mutators` at which time
/// the current GC has just finished.
fn current_gc_may_move_object(&self) -> bool;
/// An object is firstly reached by a sanity GC. So the object is reachable
/// in the current GC, and all the GC work has been done for the object (such as
/// tracing and releasing). A plan can implement this to
/// use plan specific semantics to check if the object is sane.
/// Return true if the object is considered valid by the plan.
fn sanity_check_object(&self, _object: ObjectReference) -> bool {
true
}
/// Call `space.verify_side_metadata_sanity` for all spaces in this plan.
fn verify_side_metadata_sanity(&self) {
let mut side_metadata_sanity_checker = SideMetadataSanity::new();
self.for_each_space(&mut |space| {
space.verify_side_metadata_sanity(&mut side_metadata_sanity_checker);
})
}
}
impl_downcast!(Plan assoc VM);
/**
BasePlan should contain all plan-related state and functions that are _fundamental_ to _all_ plans. These include VM-specific (but not plan-specific) features such as a code space or vm space, which are fundamental to all plans for a given VM. Features that are common to _many_ (but not intrinsically _all_) plans should instead be included in CommonPlan.
*/
#[derive(HasSpaces, PlanTraceObject)]
pub struct BasePlan<VM: VMBinding> {
pub(crate) global_state: Arc<GlobalState>,
pub options: Arc<Options>,
pub gc_trigger: Arc<GCTrigger<VM>>,
// Spaces in base plan
#[cfg(feature = "code_space")]
#[space]
pub code_space: ImmortalSpace<VM>,
#[cfg(feature = "code_space")]
#[space]
pub code_lo_space: ImmortalSpace<VM>,
#[cfg(feature = "ro_space")]
#[space]
pub ro_space: ImmortalSpace<VM>,
/// A VM space is a space allocated and populated by the VM. Currently it is used by JikesRVM
/// for boot image.
///
/// If VM space is present, it has some special interaction with the
/// `memory_manager::is_mmtk_object` and the `memory_manager::is_in_mmtk_spaces` functions.
///
/// - The functions `is_mmtk_object` and `find_object_from_internal_pointer` require
/// the valid object (VO) bit side metadata to identify objects.
/// If the binding maintains the VO bit for objects in VM spaces, those functions will work accordingly.
/// Otherwise, calling them is undefined behavior.
///
/// - The `is_in_mmtk_spaces` currently returns `true` if the given object reference is in
/// the VM space.
#[cfg(feature = "vm_space")]
#[space]
pub vm_space: VMSpace<VM>,
}
/// Args needed for creating any plan. This includes a set of contexts from MMTK or global. This
/// is passed to each plan's constructor.
pub struct CreateGeneralPlanArgs<'a, VM: VMBinding> {
pub vm_map: &'static dyn VMMap,
pub mmapper: &'static dyn Mmapper,
pub options: Arc<Options>,
pub state: Arc<GlobalState>,
pub gc_trigger: Arc<crate::util::heap::gc_trigger::GCTrigger<VM>>,
pub scheduler: Arc<GCWorkScheduler<VM>>,
pub stats: &'a Stats,
pub heap: &'a mut HeapMeta,
}
/// Args needed for creating a specific plan. This includes plan-specific args, such as plan constrainst
/// and their global side metadata specs. This is created in each plan's constructor, and will be passed
/// to `CommonPlan` or `BasePlan`. Also you can create `PlanCreateSpaceArg` from this type, and use that
/// to create spaces.
pub struct CreateSpecificPlanArgs<'a, VM: VMBinding> {
pub global_args: CreateGeneralPlanArgs<'a, VM>,
pub constraints: &'static PlanConstraints,
pub global_side_metadata_specs: Vec<SideMetadataSpec>,
}
impl<'a, VM: VMBinding> CreateSpecificPlanArgs<'a, VM> {
/// Get a PlanCreateSpaceArgs that can be used to create a space
pub fn get_space_args(
&mut self,
name: &'static str,
zeroed: bool,
permission_exec: bool,
vmrequest: VMRequest,
) -> PlanCreateSpaceArgs<VM> {
PlanCreateSpaceArgs {
name,
zeroed,
permission_exec,
vmrequest,
global_side_metadata_specs: self.global_side_metadata_specs.clone(),
vm_map: self.global_args.vm_map,
mmapper: self.global_args.mmapper,
heap: self.global_args.heap,
constraints: self.constraints,
gc_trigger: self.global_args.gc_trigger.clone(),
scheduler: self.global_args.scheduler.clone(),
options: self.global_args.options.clone(),
global_state: self.global_args.state.clone(),
}
}
}
impl<VM: VMBinding> BasePlan<VM> {
#[allow(unused_mut)] // 'args' only needs to be mutable for certain features
pub fn new(mut args: CreateSpecificPlanArgs<VM>) -> BasePlan<VM> {
BasePlan {
#[cfg(feature = "code_space")]
code_space: ImmortalSpace::new(args.get_space_args(
"code_space",
true,
true,
VMRequest::discontiguous(),
)),
#[cfg(feature = "code_space")]
code_lo_space: ImmortalSpace::new(args.get_space_args(
"code_lo_space",
true,
true,
VMRequest::discontiguous(),
)),
#[cfg(feature = "ro_space")]
ro_space: ImmortalSpace::new(args.get_space_args(
"ro_space",
true,
false,
VMRequest::discontiguous(),
)),
#[cfg(feature = "vm_space")]
vm_space: VMSpace::new(args.get_space_args(
"vm_space",
false,
false, // it doesn't matter -- we are not mmapping for VM space.
VMRequest::discontiguous(),
)),
global_state: args.global_args.state.clone(),
gc_trigger: args.global_args.gc_trigger,
options: args.global_args.options,
}
}
// Depends on what base spaces we use, unsync may be unused.
pub fn get_used_pages(&self) -> usize {
// Depends on what base spaces we use, pages may be unchanged.
#[allow(unused_mut)]
let mut pages = 0;
#[cfg(feature = "code_space")]
{
pages += self.code_space.reserved_pages();
pages += self.code_lo_space.reserved_pages();
}
#[cfg(feature = "ro_space")]
{
pages += self.ro_space.reserved_pages();
}
// If we need to count malloc'd size as part of our heap, we add it here.
#[cfg(feature = "malloc_counted_size")]
{
pages += self.global_state.get_malloc_bytes_in_pages();
}
// The VM space may be used as an immutable boot image, in which case, we should not count
// it as part of the heap size.
pages
}
pub fn trace_object<Q: ObjectQueue>(
&self,
queue: &mut Q,
object: ObjectReference,
worker: &mut GCWorker<VM>,
) -> ObjectReference {
#[cfg(feature = "code_space")]
if self.code_space.in_space(object) {
trace!("trace_object: object in code space");
return self.code_space.trace_object::<Q>(queue, object);
}
#[cfg(feature = "code_space")]
if self.code_lo_space.in_space(object) {
trace!("trace_object: object in large code space");
return self.code_lo_space.trace_object::<Q>(queue, object);
}
#[cfg(feature = "ro_space")]
if self.ro_space.in_space(object) {
trace!("trace_object: object in ro_space space");
return self.ro_space.trace_object(queue, object);
}
#[cfg(feature = "vm_space")]
if self.vm_space.in_space(object) {
trace!("trace_object: object in boot space");
return self.vm_space.trace_object(queue, object);
}
VM::VMActivePlan::vm_trace_object::<Q>(queue, object, worker)
}
pub fn prepare(&mut self, _tls: VMWorkerThread, _full_heap: bool) {
#[cfg(feature = "code_space")]
self.code_space.prepare();
#[cfg(feature = "code_space")]
self.code_lo_space.prepare();
#[cfg(feature = "ro_space")]
self.ro_space.prepare();
#[cfg(feature = "vm_space")]
self.vm_space.prepare();
}
pub fn release(&mut self, _tls: VMWorkerThread, _full_heap: bool) {
#[cfg(feature = "code_space")]
self.code_space.release();
#[cfg(feature = "code_space")]
self.code_lo_space.release();
#[cfg(feature = "ro_space")]
self.ro_space.release();
#[cfg(feature = "vm_space")]
self.vm_space.release();
}
pub(crate) fn collection_required<P: Plan>(&self, plan: &P, space_full: bool) -> bool {
let stress_force_gc =
crate::util::heap::gc_trigger::GCTrigger::<VM>::should_do_stress_gc_inner(
&self.global_state,
&self.options,
);
if stress_force_gc {
debug!(
"Stress GC: allocation_bytes = {}, stress_factor = {}",
self.global_state.allocation_bytes.load(Ordering::Relaxed),
*self.options.stress_factor
);
debug!("Doing stress GC");
self.global_state
.allocation_bytes
.store(0, Ordering::SeqCst);
}
debug!(
"self.get_reserved_pages()={}, self.get_total_pages()={}",
plan.get_reserved_pages(),
plan.get_total_pages()
);
// Check if we reserved more pages (including the collection copy reserve)
// than the heap's total pages. In that case, we will have to do a GC.
let heap_full = plan.base().gc_trigger.is_heap_full();
space_full || stress_force_gc || heap_full
}
}
/**
CommonPlan is for representing state and features used by _many_ plans, but that are not fundamental to _all_ plans. Examples include the Large Object Space and an Immortal space. Features that are fundamental to _all_ plans must be included in BasePlan.
*/
#[derive(HasSpaces, PlanTraceObject)]
pub struct CommonPlan<VM: VMBinding> {
#[space]
pub immortal: ImmortalSpace<VM>,
#[space]
pub los: LargeObjectSpace<VM>,
// TODO: We should use a marksweep space for nonmoving.
#[space]
pub nonmoving: ImmortalSpace<VM>,
#[parent]
pub base: BasePlan<VM>,
}
impl<VM: VMBinding> CommonPlan<VM> {
pub fn new(mut args: CreateSpecificPlanArgs<VM>) -> CommonPlan<VM> {
CommonPlan {
immortal: ImmortalSpace::new(args.get_space_args(
"immortal",
true,
false,
VMRequest::discontiguous(),
)),
los: LargeObjectSpace::new(
args.get_space_args("los", true, false, VMRequest::discontiguous()),
false,
),
nonmoving: ImmortalSpace::new(args.get_space_args(
"nonmoving",
true,
false,
VMRequest::discontiguous(),
)),
base: BasePlan::new(args),
}
}
pub fn get_used_pages(&self) -> usize {
self.immortal.reserved_pages()
+ self.los.reserved_pages()
+ self.nonmoving.reserved_pages()
+ self.base.get_used_pages()
}
pub fn trace_object<Q: ObjectQueue>(
&self,
queue: &mut Q,
object: ObjectReference,
worker: &mut GCWorker<VM>,
) -> ObjectReference {
if self.immortal.in_space(object) {
trace!("trace_object: object in immortal space");
return self.immortal.trace_object(queue, object);
}
if self.los.in_space(object) {
trace!("trace_object: object in los");
return self.los.trace_object(queue, object);
}
if self.nonmoving.in_space(object) {
trace!("trace_object: object in nonmoving space");
return self.nonmoving.trace_object(queue, object);
}
self.base.trace_object::<Q>(queue, object, worker)
}
pub fn prepare(&mut self, tls: VMWorkerThread, full_heap: bool) {
self.immortal.prepare();
self.los.prepare(full_heap);
self.nonmoving.prepare();
self.base.prepare(tls, full_heap)
}
pub fn release(&mut self, tls: VMWorkerThread, full_heap: bool) {
self.immortal.release();
self.los.release(full_heap);
self.nonmoving.release();
self.base.release(tls, full_heap)
}
pub fn get_immortal(&self) -> &ImmortalSpace<VM> {
&self.immortal
}
pub fn get_los(&self) -> &LargeObjectSpace<VM> {
&self.los
}
pub fn get_nonmoving(&self) -> &ImmortalSpace<VM> {
&self.nonmoving
}
}
use crate::policy::gc_work::TraceKind;
use crate::vm::VMBinding;
/// A trait for anything that contains spaces.
/// Examples include concrete plans as well as `Gen`, `CommonPlan` and `BasePlan`.
/// All plans must implement this trait.
///
/// This trait provides methods for enumerating spaces in a struct, including spaces in nested
/// struct.
///
/// This trait can be implemented automatically by adding the `#[derive(HasSpaces)]` attribute to a
/// struct. It uses the derive macro defined in the `mmtk-macros` crate.
///
/// This trait visits spaces as `dyn`, so it should only be used when performance is not critical.
/// For performance critical methods that visit spaces in a plan, such as `trace_object`, it is
/// recommended to define a trait (such as `PlanTraceObject`) for concrete plans to implement, and
/// implement (by hand or automatically) the method without `dyn`.
pub trait HasSpaces {
// The type of the VM.
type VM: VMBinding;
/// Visit each space field immutably.
///
/// If `Self` contains nested fields that contain more spaces, this method shall visit spaces
/// in the outer struct first.
fn for_each_space(&self, func: &mut dyn FnMut(&dyn Space<Self::VM>));
/// Visit each space field mutably.
///
/// If `Self` contains nested fields that contain more spaces, this method shall visit spaces
/// in the outer struct first.
fn for_each_space_mut(&mut self, func: &mut dyn FnMut(&mut dyn Space<Self::VM>));
}
/// A plan that uses `PlanProcessEdges` needs to provide an implementation for this trait.
/// Generally a plan does not need to manually implement this trait. Instead, we provide
/// a procedural macro that helps generate an implementation. Please check `macros/trace_object`.
///
/// A plan could also manually implement this trait. For the sake of performance, the implementation
/// of this trait should mark methods as `[inline(always)]`.
pub trait PlanTraceObject<VM: VMBinding> {
/// Trace objects in the plan. Generally one needs to figure out
/// which space an object resides in, and invokes the corresponding policy
/// trace object method.
///
/// Arguments:
/// * `trace`: the current transitive closure
/// * `object`: the object to trace.
/// * `worker`: the GC worker that is tracing this object.
fn trace_object<Q: ObjectQueue, const KIND: TraceKind>(
&self,
queue: &mut Q,
object: ObjectReference,
worker: &mut GCWorker<VM>,
) -> ObjectReference;
/// Post-scan objects in the plan. Each object is scanned by `VM::VMScanning::scan_object()`, and this function
/// will be called after the `VM::VMScanning::scan_object()` as a hook to invoke possible policy post scan method.
/// If a plan does not have any policy that needs post scan, this method can be implemented as empty.
/// If a plan has a policy that has some policy specific behaviors for scanning (e.g. mark lines in Immix),
/// this method should also invoke those policy specific methods for objects in that space.
fn post_scan_object(&self, object: ObjectReference);
/// Whether objects in this plan may move. If any of the spaces used by the plan may move objects, this should
/// return true.
fn may_move_objects<const KIND: TraceKind>() -> bool;
}
use enum_map::Enum;
/// Allocation semantics that MMTk provides.
/// Each allocation request requires a desired semantic for the object to allocate.
#[repr(i32)]
#[derive(Clone, Copy, Debug, Enum, PartialEq, Eq)]
pub enum AllocationSemantics {
/// The default semantic. This means there is no specific requirement for the allocation.
/// The actual semantic of the default will depend on the GC plan in use.
Default = 0,
/// Immortal objects will not be reclaimed. MMTk still traces immortal objects, but will not
/// reclaim the objects even if they are dead.
Immortal = 1,
/// Large objects. It is usually desirable to allocate large objects specially. Large objects
/// are allocated with page granularity and will not be moved.
/// Each plan provides `max_non_los_default_alloc_bytes` (see [`crate::plan::PlanConstraints`]),
/// which defines a threshold for objects that can be allocated with the default semantic. Any object that is larger than the
/// threshold must be allocated with the `Los` semantic.
/// This semantic may get removed and MMTk will transparently allocate into large object space for large objects.
Los = 2,
/// Code objects have execution permission.
/// Note that this is a place holder for now. Currently all the memory MMTk allocates has execution permission.
Code = 3,
/// Read-only objects cannot be mutated once it is initialized.
/// Note that this is a place holder for now. It does not provide read only semantic.
ReadOnly = 4,
/// Los + Code.
LargeCode = 5,
/// Non moving objects will not be moved by GC.
NonMoving = 6,
}