1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
use crate::scheduler::affinity::{get_total_num_cpus, CoreId};
use crate::util::constants::LOG_BYTES_IN_MBYTE;
use crate::util::Address;
use std::default::Default;
use std::fmt::Debug;
use std::str::FromStr;
use strum_macros::EnumString;
/// The default stress factor. This is set to the max usize,
/// which means we will never trigger a stress GC for the default value.
pub const DEFAULT_STRESS_FACTOR: usize = usize::MAX;
/// The zeroing approach to use for new object allocations.
/// Affects each plan differently.
#[derive(Copy, Clone, EnumString, Debug)]
pub enum NurseryZeroingOptions {
/// Zeroing with normal temporal write.
Temporal,
/// Zeroing with cache-bypassing non-temporal write.
Nontemporal,
/// Zeroing with a separate zeroing thread.
Concurrent,
/// An adaptive approach using both non-temporal write and a concurrent zeroing thread.
Adaptive,
}
/// Select a GC plan for MMTk.
#[derive(Copy, Clone, EnumString, Debug, PartialEq, Eq)]
pub enum PlanSelector {
/// Allocation only without a collector. This is usually used for debugging.
/// Similar to OpenJDK epsilon (<https://openjdk.org/jeps/318>).
NoGC,
/// A semi-space collector, which divides the heap into two spaces and
/// copies the live objects into the other space for every GC.
SemiSpace,
/// A generational collector that uses a copying nursery, and the semi-space policy as its mature space.
GenCopy,
/// A generational collector that uses a copying nursery, and Immix as its mature space.
GenImmix,
/// A mark-sweep collector, which marks live objects and sweeps dead objects during GC.
MarkSweep,
/// A debugging collector that allocates memory at page granularity, and protects pages for dead objects
/// to prevent future access.
PageProtect,
/// A mark-region collector that allows an opportunistic defragmentation mechanism.
Immix,
/// A mark-compact collector that marks objects and performs Cheney-style copying.
MarkCompact,
/// An Immix collector that uses a sticky mark bit to allow generational behaviors without a copying nursery.
StickyImmix,
}
/// MMTk option for perf events
///
/// The format is
/// ```
/// <event> ::= <event-name> "," <pid> "," <cpu>
/// <events> ::= <event> ";" <events> | <event> | ""
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct PerfEventOptions {
/// A vector of perf events in tuples of (event name, PID, CPU)
pub events: Vec<(String, i32, i32)>,
}
impl PerfEventOptions {
fn parse_perf_events(events: &str) -> Result<Vec<(String, i32, i32)>, String> {
events
.split(';')
.filter(|e| !e.is_empty())
.map(|e| {
let e: Vec<&str> = e.split(',').collect();
if e.len() != 3 {
Err("Please supply (event name, pid, cpu)".into())
} else {
let event_name = e[0].into();
let pid = e[1]
.parse()
.map_err(|_| String::from("Failed to parse cpu"))?;
let cpu = e[2]
.parse()
.map_err(|_| String::from("Failed to parse cpu"))?;
Ok((event_name, pid, cpu))
}
})
.collect()
}
}
impl FromStr for PerfEventOptions {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
PerfEventOptions::parse_perf_events(s).map(|events| PerfEventOptions { events })
}
}
/// The default min nursery size. This does not affect the actual space we create as nursery. It is
/// only used in the GC trigger check.
#[cfg(target_pointer_width = "64")]
pub const DEFAULT_MIN_NURSERY: usize = 2 << LOG_BYTES_IN_MBYTE;
/// The default max nursery size. This does not affect the actual space we create as nursery. It is
/// only used in the GC trigger check.
#[cfg(target_pointer_width = "64")]
pub const DEFAULT_MAX_NURSERY: usize = (1 << 20) << LOG_BYTES_IN_MBYTE;
/// The default min nursery size. This does not affect the actual space we create as nursery. It is
/// only used in the GC trigger check.
#[cfg(target_pointer_width = "32")]
pub const DEFAULT_MIN_NURSERY: usize = 2 << LOG_BYTES_IN_MBYTE;
/// The default max nursery size for 32 bits.
pub const DEFAULT_MAX_NURSERY_32: usize = 32 << LOG_BYTES_IN_MBYTE;
/// The default max nursery size. This does not affect the actual space we create as nursery. It is
/// only used in the GC trigger check.
#[cfg(target_pointer_width = "32")]
pub const DEFAULT_MAX_NURSERY: usize = DEFAULT_MAX_NURSERY_32;
/// The default min nursery size proportional to the current heap size
pub const DEFAULT_PROPORTIONAL_MIN_NURSERY: f64 = 0.25;
/// The default max nursery size proportional to the current heap size
pub const DEFAULT_PROPORTIONAL_MAX_NURSERY: f64 = 1.0;
fn always_valid<T>(_: &T) -> bool {
true
}
/// An MMTk option of a given type.
/// This type allows us to store some metadata for the option. To get the value of an option,
/// you can simply dereference it (for example, *options.threads).
#[derive(Clone)]
pub struct MMTKOption<T: Debug + Clone> {
/// The actual value for the option
value: T,
/// The validator to ensure the value is valid.
validator: fn(&T) -> bool,
/// Can we set this option through env vars?
from_env_var: bool,
/// Can we set this option through command line options/API?
from_command_line: bool,
}
impl<T: Debug + Clone> MMTKOption<T> {
/// Create a new MMTKOption
pub fn new(
value: T,
validator: fn(&T) -> bool,
from_env_var: bool,
from_command_line: bool,
) -> Self {
// FIXME: We should enable the following check to make sure the initial value is valid.
// However, we cannot enable it now. For options like perf events, the validator checks
// if the perf event feature is enabled. So when the perf event features are not enabled,
// the validator will fail whatever value we try to set (including the initial value).
// Ideally, we conditionally compile options based on the feature. But options! macro
// does not allow attributes in it, so we cannot conditionally compile options.
// let is_valid = validator(&value);
// assert!(
// is_valid,
// "Unable to create MMTKOption: initial value {:?} is invalid",
// value
// );
MMTKOption {
value,
validator,
from_env_var,
from_command_line,
}
}
/// Set the option to the given value. Returns true if the value is valid, and we set the option to the value.
pub fn set(&mut self, value: T) -> bool {
if (self.validator)(&value) {
self.value = value;
return true;
}
false
}
}
// Dereference an option to get its value.
impl<T: Debug + Clone> std::ops::Deref for MMTKOption<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
&self.value
}
}
macro_rules! options {
// Verify whether we can set an option through env var or command line.
(@verify_set_from($self: expr, $key: expr, $verify_field: ident, $($name: ident),*)) => {
match $key {
$(stringify!($name) => { assert!($self.$name.$verify_field, "cannot set option {} (not {})", $key, stringify!($verify_field)) }),*
_ => panic!("Invalid Options key: {}", $key)
}
};
($($(#[$outer:meta])*$name:ident: $type:ty[env_var: $env_var:expr, command_line: $command_line:expr][$validator:expr] = $default:expr),*,) => [
options!($(#[$outer])*$($name: $type[env_var: $env_var, command_line: $command_line, mutable: $mutable][$validator] = $default),*);
];
($($(#[$outer:meta])*$name:ident: $type:ty[env_var: $env_var:expr, command_line: $command_line:expr][$validator:expr] = $default:expr),*) => [
/// MMTk command line options.
#[derive(Clone)]
pub struct Options {
$($(#[$outer])*pub $name: MMTKOption<$type>),*
}
impl Options {
/// Set an option from env var
pub fn set_from_env_var(&mut self, s: &str, val: &str) -> bool {
options!(@verify_set_from(self, s, from_env_var, $($name),*));
self.set_inner(s, val)
}
/// Set an option from command line
pub fn set_from_command_line(&mut self, s: &str, val: &str) -> bool {
options!(@verify_set_from(self, s, from_command_line, $($name),*));
self.set_inner(s, val)
}
/// Bulk process options. Returns true if all the options are processed successfully.
/// This method returns false if the option string is invalid, or if it includes any invalid option.
///
/// Arguments:
/// * `options`: a string that is key value pairs separated by white spaces or commas, e.g. `threads=1 stress_factor=4096`,
/// or `threads=1,stress_factor=4096`
pub fn set_bulk_from_command_line(&mut self, options: &str) -> bool {
for opt in options.replace(",", " ").split_ascii_whitespace() {
let kv_pair: Vec<&str> = opt.split('=').collect();
if kv_pair.len() != 2 {
return false;
}
let key = kv_pair[0];
let val = kv_pair[1];
if !self.set_from_command_line(key, val) {
return false;
}
}
true
}
/// Set an option and run its validator for its value.
fn set_inner(&mut self, s: &str, val: &str) -> bool {
match s {
// Parse the given value from str (by env vars or by calling process()) to the right type
$(stringify!($name) => if let Ok(typed_val) = val.parse::<$type>() {
let is_set = self.$name.set(typed_val);
if !is_set {
eprintln!("Warn: unable to set {}={:?}. Invalid value. Default value will be used.", s, val);
}
is_set
} else {
eprintln!("Warn: unable to set {}={:?}. Can't parse value. Default value will be used.", s, val);
false
})*
_ => panic!("Invalid Options key: {}", s)
}
}
/// Create an `Options` instance with built-in default settings.
fn new() -> Self {
Options {
$($name: MMTKOption::new($default, $validator, $env_var, $command_line)),*
}
}
/// Read options from environment variables, and apply those settings to self.
///
/// If we have environment variables that start with `MMTK_` and match any option (such
/// as `MMTK_STRESS_FACTOR`), we set the option to its value (if it is a valid value).
pub fn read_env_var_settings(&mut self) {
const PREFIX: &str = "MMTK_";
for (key, val) in std::env::vars() {
// strip the prefix, and get the lower case string
if let Some(rest_of_key) = key.strip_prefix(PREFIX) {
let lowercase: &str = &rest_of_key.to_lowercase();
match lowercase {
$(stringify!($name) => { self.set_from_env_var(lowercase, &val); },)*
_ => {}
}
}
}
}
}
impl Default for Options {
/// By default, `Options` instance is created with built-in default settings.
fn default() -> Self {
Self::new()
}
}
]
}
impl Options {
/// Check if the options are set for stress GC. If either stress_factor or analysis_factor is set,
/// we should do stress GC.
pub fn is_stress_test_gc_enabled(&self) -> bool {
*self.stress_factor != DEFAULT_STRESS_FACTOR
|| *self.analysis_factor != DEFAULT_STRESS_FACTOR
}
}
#[derive(Clone, Debug, PartialEq)]
/// AffinityKind describes how to set the affinity of GC threads. Note that we currently assume
/// that each GC thread is equivalent to an OS or hardware thread.
pub enum AffinityKind {
/// Delegate thread affinity to the OS scheduler
OsDefault,
/// Assign thread affinities over a list of cores in a round robin fashion. Note that if number
/// of threads > number of cores specified, then multiple threads will be assigned the same
/// core.
// XXX: Maybe using a u128 bitvector with each bit representing a core is more performant?
RoundRobin(Vec<CoreId>),
}
impl AffinityKind {
/// Returns an AffinityKind or String containing error. Expects the list of cores to be
/// formatted as numbers separated by commas, including ranges. There should be no spaces
/// between the cores in the list. For example: 0,5,8-11 specifies that the cores 0,5,8,9,10,11
/// should be used for pinning threads. Performs de-duplication of specified cores. Note that
/// the core list is sorted as a side-effect whenever a new core is added to the set.
fn parse_cpulist(cpulist: &str) -> Result<AffinityKind, String> {
let mut cpuset = vec![];
if cpulist.is_empty() {
return Ok(AffinityKind::OsDefault);
}
// Split on ',' first and then split on '-' if there is a range
for split in cpulist.split(',') {
if !split.contains('-') {
if !split.is_empty() {
if let Ok(core) = split.parse::<u16>() {
cpuset.push(core);
cpuset.sort_unstable();
cpuset.dedup();
continue;
}
}
} else {
// Contains a range
let range: Vec<&str> = split.split('-').collect();
if range.len() == 2 {
if let Ok(start) = range[0].parse::<u16>() {
if let Ok(end) = range[1].parse::<u16>() {
if start >= end {
return Err(
"Starting core id in range should be less than the end"
.to_string(),
);
}
for cpu in start..=end {
cpuset.push(cpu);
cpuset.sort_unstable();
cpuset.dedup();
}
continue;
}
}
}
}
return Err("Core ids have been incorrectly specified".to_string());
}
Ok(AffinityKind::RoundRobin(cpuset))
}
/// Return true if the affinity is either OsDefault or the cores in the list do not exceed the
/// maximum number of cores allocated to the program. Assumes core ids on the system are
/// 0-indexed.
pub fn validate(&self) -> bool {
let num_cpu = get_total_num_cpus();
if let AffinityKind::RoundRobin(cpuset) = self {
for cpu in cpuset {
if cpu >= &num_cpu {
return false;
}
}
}
true
}
}
impl FromStr for AffinityKind {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
AffinityKind::parse_cpulist(s)
}
}
#[derive(Copy, Clone, Debug)]
/// An option that provides a min/max interface to MMTk and a Bounded/Fixed interface to the
/// user/VM.
pub enum NurserySize {
/// A Bounded nursery has different upper and lower bounds. The size only controls the upper
/// bound. Hence, it is considered to be a "variable size" nursery.
Bounded {
/// The lower bound of the nursery size in bytes. Default to [`DEFAULT_MIN_NURSERY`].
min: usize,
/// The upper bound of the nursery size in bytes. Default to [`DEFAULT_MAX_NURSERY`].
max: usize,
},
/// A bounded nursery that is porportional to the current heap size.
ProportionalBounded {
/// The lower bound of the nursery size as a proportion of the current heap size. Default to [`DEFAULT_PROPORTIONAL_MIN_NURSERY`].
min: f64,
/// The upper bound of the nursery size as a proportion of the current heap size. Default to [`DEFAULT_PROPORTIONAL_MAX_NURSERY`].
max: f64,
},
/// A Fixed nursery has the same upper and lower bounds. The size controls both the upper and
/// lower bounds. Note that this is considered less performant than a Bounded nursery since a
/// Fixed nursery size can be too restrictive and cause more GCs.
Fixed(usize),
}
impl NurserySize {
/// Return true if the values are valid.
fn validate(&self) -> bool {
match *self {
NurserySize::Bounded { min, max } => min <= max,
NurserySize::ProportionalBounded { min, max } => {
0.0f64 < min && min <= max && max <= 1.0f64
}
NurserySize::Fixed(_) => true,
}
}
}
impl FromStr for NurserySize {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let parts: Vec<&str> = s.split(':').collect();
if parts.len() != 2 {
return Err("Invalid format".to_string());
}
let variant = parts[0];
let values: Vec<&str> = parts[1].split(',').collect();
fn default_or_parse<T: FromStr>(val: &str, default_value: T) -> Result<T, String> {
if val == "_" {
Ok(default_value)
} else {
val.parse::<T>()
.map_err(|_| format!("Failed to parse {:?}", std::any::type_name::<T>()))
}
}
match variant {
"Bounded" => {
if values.len() == 2 {
let min = default_or_parse(values[0], DEFAULT_MIN_NURSERY)?;
let max = default_or_parse(values[1], DEFAULT_MAX_NURSERY)?;
Ok(NurserySize::Bounded { min, max })
} else {
Err("Bounded requires two values".to_string())
}
}
"ProportionalBounded" => {
if values.len() == 2 {
let min = default_or_parse(values[0], DEFAULT_PROPORTIONAL_MIN_NURSERY)?;
let max = default_or_parse(values[1], DEFAULT_PROPORTIONAL_MAX_NURSERY)?;
Ok(NurserySize::ProportionalBounded { min, max })
} else {
Err("ProportionalBounded requires two values".to_string())
}
}
"Fixed" => {
if values.len() == 1 {
let size = values[0]
.parse::<usize>()
.map_err(|_| "Invalid size value".to_string())?;
Ok(NurserySize::Fixed(size))
} else {
Err("Fixed requires one value".to_string())
}
}
_ => Err("Unknown variant".to_string()),
}
}
}
#[cfg(test)]
mod nursery_size_parsing_tests {
use super::*;
#[test]
fn test_bounded() {
// Simple case
let result = "Bounded:1,2".parse::<NurserySize>().unwrap();
if let NurserySize::Bounded { min, max } = result {
assert_eq!(min, 1);
assert_eq!(max, 2);
} else {
panic!("Failed: {:?}", result);
}
// Default min
let result = "Bounded:_,2".parse::<NurserySize>().unwrap();
if let NurserySize::Bounded { min, max } = result {
assert_eq!(min, DEFAULT_MIN_NURSERY);
assert_eq!(max, 2);
} else {
panic!("Failed: {:?}", result);
}
// Default max
let result = "Bounded:1,_".parse::<NurserySize>().unwrap();
if let NurserySize::Bounded { min, max } = result {
assert_eq!(min, 1);
assert_eq!(max, DEFAULT_MAX_NURSERY);
} else {
panic!("Failed: {:?}", result);
}
// Default both
let result = "Bounded:_,_".parse::<NurserySize>().unwrap();
if let NurserySize::Bounded { min, max } = result {
assert_eq!(min, DEFAULT_MIN_NURSERY);
assert_eq!(max, DEFAULT_MAX_NURSERY);
} else {
panic!("Failed: {:?}", result);
}
}
#[test]
fn test_proportional() {
// Simple case
let result = "ProportionalBounded:0.1,0.8"
.parse::<NurserySize>()
.unwrap();
if let NurserySize::ProportionalBounded { min, max } = result {
assert_eq!(min, 0.1);
assert_eq!(max, 0.8);
} else {
panic!("Failed: {:?}", result);
}
// Default min
let result = "ProportionalBounded:_,0.8".parse::<NurserySize>().unwrap();
if let NurserySize::ProportionalBounded { min, max } = result {
assert_eq!(min, DEFAULT_PROPORTIONAL_MIN_NURSERY);
assert_eq!(max, 0.8);
} else {
panic!("Failed: {:?}", result);
}
// Default max
let result = "ProportionalBounded:0.1,_".parse::<NurserySize>().unwrap();
if let NurserySize::ProportionalBounded { min, max } = result {
assert_eq!(min, 0.1);
assert_eq!(max, DEFAULT_PROPORTIONAL_MAX_NURSERY);
} else {
panic!("Failed: {:?}", result);
}
// Default both
let result = "ProportionalBounded:_,_".parse::<NurserySize>().unwrap();
if let NurserySize::ProportionalBounded { min, max } = result {
assert_eq!(min, DEFAULT_PROPORTIONAL_MIN_NURSERY);
assert_eq!(max, DEFAULT_PROPORTIONAL_MAX_NURSERY);
} else {
panic!("Failed: {:?}", result);
}
}
}
/// Select a GC trigger for MMTk.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum GCTriggerSelector {
/// GC is triggered when a fix-sized heap is full. The value specifies the fixed heap size in bytes.
FixedHeapSize(usize),
/// GC is triggered by internal herusticis, and the heap size is varying between the two given values.
/// The two values are the lower and the upper bound of the heap size.
DynamicHeapSize(usize, usize),
/// Delegate the GC triggering to the binding. This is not supported at the moment.
Delegated,
}
impl GCTriggerSelector {
const K: u64 = 1024;
const M: u64 = 1024 * Self::K;
const G: u64 = 1024 * Self::M;
const T: u64 = 1024 * Self::G;
/// get max heap size
pub fn max_heap_size(&self) -> usize {
match self {
Self::FixedHeapSize(s) => *s,
Self::DynamicHeapSize(_, s) => *s,
_ => unreachable!("Cannot get max heap size"),
}
}
/// Parse a size representation, which could be a number to represents bytes,
/// or a number with the suffix K/k/M/m/G/g. Return the byte number if it can be
/// parsed properly, otherwise return an error string.
fn parse_size(s: &str) -> Result<usize, String> {
let s = s.to_lowercase();
if s.ends_with(char::is_alphabetic) {
let num = s[0..s.len() - 1]
.parse::<u64>()
.map_err(|e| e.to_string())?;
let size = if s.ends_with('k') {
num.checked_mul(Self::K)
} else if s.ends_with('m') {
num.checked_mul(Self::M)
} else if s.ends_with('g') {
num.checked_mul(Self::G)
} else if s.ends_with('t') {
num.checked_mul(Self::T)
} else {
return Err(format!(
"Unknown size descriptor: {:?}",
&s[(s.len() - 1)..]
));
};
if let Some(size) = size {
size.try_into()
.map_err(|_| format!("size overflow: {}", size))
} else {
Err(format!("size overflow: {}", s))
}
} else {
s.parse::<usize>().map_err(|e| e.to_string())
}
}
/// Return true if the gc trigger is valid
fn validate(&self) -> bool {
match self {
Self::FixedHeapSize(size) => *size > 0,
Self::DynamicHeapSize(min, max) => min <= max,
Self::Delegated => true,
}
}
}
impl FromStr for GCTriggerSelector {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
use regex::Regex;
lazy_static! {
static ref FIXED_HEAP_REGEX: Regex =
Regex::new(r"^FixedHeapSize:(?P<size>\d+[kKmMgGtT]?)$").unwrap();
static ref DYNAMIC_HEAP_REGEX: Regex =
Regex::new(r"^DynamicHeapSize:(?P<min>\d+[kKmMgGtT]?),(?P<max>\d+[kKmMgGtT]?)$")
.unwrap();
}
if s.is_empty() {
return Err("No GC trigger policy is supplied".to_string());
}
if let Some(captures) = FIXED_HEAP_REGEX.captures(s) {
return Self::parse_size(&captures["size"]).map(Self::FixedHeapSize);
} else if let Some(captures) = DYNAMIC_HEAP_REGEX.captures(s) {
let min = Self::parse_size(&captures["min"])?;
let max = Self::parse_size(&captures["max"])?;
return Ok(Self::DynamicHeapSize(min, max));
} else if s.starts_with("Delegated") {
return Ok(Self::Delegated);
}
Err(format!("Failed to parse the GC trigger option: {:?}", s))
}
}
#[cfg(test)]
mod gc_trigger_tests {
use super::*;
#[test]
fn test_parse_size() {
// correct cases
assert_eq!(GCTriggerSelector::parse_size("0"), Ok(0));
assert_eq!(GCTriggerSelector::parse_size("1K"), Ok(1024));
assert_eq!(GCTriggerSelector::parse_size("1k"), Ok(1024));
assert_eq!(GCTriggerSelector::parse_size("2M"), Ok(2 * 1024 * 1024));
assert_eq!(GCTriggerSelector::parse_size("2m"), Ok(2 * 1024 * 1024));
assert_eq!(
GCTriggerSelector::parse_size("2G"),
Ok(2 * 1024 * 1024 * 1024)
);
assert_eq!(
GCTriggerSelector::parse_size("2g"),
Ok(2 * 1024 * 1024 * 1024)
);
#[cfg(target_pointer_width = "64")]
assert_eq!(
GCTriggerSelector::parse_size("2T"),
Ok(2 * 1024 * 1024 * 1024 * 1024)
);
// empty
assert_eq!(
GCTriggerSelector::parse_size(""),
Err("cannot parse integer from empty string".to_string())
);
// negative number - we dont care about actual error message
assert!(GCTriggerSelector::parse_size("-1").is_err());
// no number
assert!(GCTriggerSelector::parse_size("k").is_err());
}
#[test]
#[cfg(target_pointer_width = "32")]
fn test_parse_overflow_size() {
assert_eq!(
GCTriggerSelector::parse_size("4G"),
Err("size overflow: 4294967296".to_string())
);
assert_eq!(GCTriggerSelector::parse_size("4294967295"), Ok(4294967295));
}
#[test]
fn test_parse_fixed_heap() {
assert_eq!(
GCTriggerSelector::from_str("FixedHeapSize:1024"),
Ok(GCTriggerSelector::FixedHeapSize(1024))
);
assert_eq!(
GCTriggerSelector::from_str("FixedHeapSize:4m"),
Ok(GCTriggerSelector::FixedHeapSize(4 * 1024 * 1024))
);
#[cfg(target_pointer_width = "64")]
assert_eq!(
GCTriggerSelector::from_str("FixedHeapSize:4t"),
Ok(GCTriggerSelector::FixedHeapSize(
4 * 1024 * 1024 * 1024 * 1024
))
);
// incorrect
assert!(GCTriggerSelector::from_str("FixedHeapSize").is_err());
assert!(GCTriggerSelector::from_str("FixedHeapSize:").is_err());
assert!(GCTriggerSelector::from_str("FixedHeapSize:-1").is_err());
}
#[test]
fn test_parse_dynamic_heap() {
assert_eq!(
GCTriggerSelector::from_str("DynamicHeapSize:1024,2048"),
Ok(GCTriggerSelector::DynamicHeapSize(1024, 2048))
);
assert_eq!(
GCTriggerSelector::from_str("DynamicHeapSize:1024,1024"),
Ok(GCTriggerSelector::DynamicHeapSize(1024, 1024))
);
assert_eq!(
GCTriggerSelector::from_str("DynamicHeapSize:1m,2m"),
Ok(GCTriggerSelector::DynamicHeapSize(
1024 * 1024,
2 * 1024 * 1024
))
);
// incorrect
assert!(GCTriggerSelector::from_str("DynamicHeapSize:1024,1024,").is_err());
}
#[test]
fn test_validate() {
assert!(GCTriggerSelector::FixedHeapSize(1024).validate());
assert!(GCTriggerSelector::DynamicHeapSize(1024, 2048).validate());
assert!(GCTriggerSelector::DynamicHeapSize(1024, 1024).validate());
assert!(!GCTriggerSelector::FixedHeapSize(0).validate());
assert!(!GCTriggerSelector::DynamicHeapSize(2048, 1024).validate());
}
}
// Currently we allow all the options to be set by env var for the sake of convenience.
// At some point, we may disallow this and all the options can only be set by command line.
options! {
/// The GC plan to use.
plan: PlanSelector [env_var: true, command_line: true] [always_valid] = PlanSelector::GenImmix,
/// Number of GC worker threads.
threads: usize [env_var: true, command_line: true] [|v: &usize| *v > 0] = num_cpus::get(),
/// Enable an optimization that only scans the part of the stack that has changed since the last GC (not supported)
use_short_stack_scans: bool [env_var: true, command_line: true] [always_valid] = false,
/// Enable a return barrier (not supported)
use_return_barrier: bool [env_var: true, command_line: true] [always_valid] = false,
/// Should we eagerly finish sweeping at the start of a collection? (not supported)
eager_complete_sweep: bool [env_var: true, command_line: true] [always_valid] = false,
/// Should we ignore GCs requested by the user (e.g. java.lang.System.gc)?
ignore_system_gc: bool [env_var: true, command_line: true] [always_valid] = false,
/// The nursery size for generational plans. It can be one of Bounded, ProportionalBounded or Fixed.
/// The nursery size can be set like 'Fixed:8192', for example,
/// to have a Fixed nursery size of 8192 bytes, or 'ProportionalBounded:0.2,1.0' to have a nursery size
/// between 20% and 100% of the heap size. You can omit lower bound and upper bound to use the default
/// value for bounded nursery by using '_'. For example, 'ProportionalBounded:0.1,_' sets the min nursery
/// to 10% of the heap size while using the default value for max nursery.
nursery: NurserySize [env_var: true, command_line: true] [|v: &NurserySize| v.validate()]
= NurserySize::ProportionalBounded { min: DEFAULT_PROPORTIONAL_MIN_NURSERY, max: DEFAULT_PROPORTIONAL_MAX_NURSERY },
/// Should a major GC be performed when a system GC is required?
full_heap_system_gc: bool [env_var: true, command_line: true] [always_valid] = false,
/// Should finalization be disabled?
no_finalizer: bool [env_var: true, command_line: true] [always_valid] = false,
/// Should reference type processing be disabled?
/// If reference type processing is disabled, no weak reference processing work is scheduled,
/// and we expect a binding to treat weak references as strong references.
/// We disable weak reference processing by default, as we are still working on it. This will be changed to `false`
/// once weak reference processing is implemented properly.
no_reference_types: bool [env_var: true, command_line: true] [always_valid] = true,
/// The zeroing approach to use for new object allocations. Affects each plan differently. (not supported)
nursery_zeroing: NurseryZeroingOptions[env_var: true, command_line: true] [always_valid] = NurseryZeroingOptions::Temporal,
/// How frequent (every X bytes) should we do a stress GC?
stress_factor: usize [env_var: true, command_line: true] [always_valid] = DEFAULT_STRESS_FACTOR,
/// How frequent (every X bytes) should we run analysis (a STW event that collects data)
analysis_factor: usize [env_var: true, command_line: true] [always_valid] = DEFAULT_STRESS_FACTOR,
/// Precise stress test. Trigger stress GCs exactly at X bytes if this is true. This is usually used to test the GC correctness
/// and will significantly slow down the mutator performance. If this is false, stress GCs will only be triggered when an allocation reaches
/// the slow path. This means we may have allocated more than X bytes or fewer than X bytes when we actually trigger a stress GC.
/// But this should have no obvious mutator overhead, and can be used to test GC performance along with a larger stress
/// factor (e.g. tens of metabytes).
precise_stress: bool [env_var: true, command_line: true] [always_valid] = true,
/// The start of vmspace.
vm_space_start: Address [env_var: true, command_line: true] [always_valid] = Address::ZERO,
/// The size of vmspace.
vm_space_size: usize [env_var: true, command_line: true] [|v: &usize| *v > 0] = 0xdc0_0000,
/// Perf events to measure
/// Semicolons are used to separate events
/// Each event is in the format of event_name,pid,cpu (see man perf_event_open for what pid and cpu mean).
/// For example, PERF_COUNT_HW_CPU_CYCLES,0,-1 measures the CPU cycles for the current process on all the CPU cores.
/// Measuring perf events for work packets. NOTE that be VERY CAREFUL when using this option, as this may greatly slowdown GC performance.
// TODO: Ideally this option should only be included when the features 'perf_counter' and 'work_packet_stats' are enabled. The current macro does not allow us to do this.
work_perf_events: PerfEventOptions [env_var: true, command_line: true] [|_| cfg!(all(feature = "perf_counter", feature = "work_packet_stats"))] = PerfEventOptions {events: vec![]},
/// Measuring perf events for GC and mutators
// TODO: Ideally this option should only be included when the features 'perf_counter' are enabled. The current macro does not allow us to do this.
phase_perf_events: PerfEventOptions [env_var: true, command_line: true] [|_| cfg!(feature = "perf_counter")] = PerfEventOptions {events: vec![]},
/// Should we exclude perf events occurring in kernel space. By default we include the kernel.
/// Only set this option if you know the implications of excluding the kernel!
perf_exclude_kernel: bool [env_var: true, command_line: true] [|_| cfg!(feature = "perf_counter")] = false,
/// Set how to bind affinity to the GC Workers. Default thread affinity delegates to the OS
/// scheduler. If a list of cores are specified, cores are allocated to threads in a round-robin
/// fashion. The core ids should match the ones reported by /proc/cpuinfo. Core ids are
/// separated by commas and may include ranges. There should be no spaces in the core list. For
/// example: 0,5,8-11 specifies that cores 0,5,8,9,10,11 should be used for pinning threads.
/// Note that in the case the program has only been allocated a certain number of cores using
/// `taskset`, the core ids in the list should be specified by their perceived index as using
/// `taskset` will essentially re-label the core ids. For example, running the program with
/// `MMTK_THREAD_AFFINITY="0-4" taskset -c 6-12 <program>` means that the cores 6,7,8,9,10 will
/// be used to pin threads even though we specified the core ids "0,1,2,3,4".
/// `MMTK_THREAD_AFFINITY="12" taskset -c 6-12 <program>` will not work, on the other hand, as
/// there is no core with (perceived) id 12.
// XXX: This option is currently only supported on Linux.
thread_affinity: AffinityKind [env_var: true, command_line: true] [|v: &AffinityKind| v.validate()] = AffinityKind::OsDefault,
/// Set the GC trigger. This defines the heap size and how MMTk triggers a GC.
/// Default to a fixed heap size of 0.5x physical memory.
gc_trigger: GCTriggerSelector [env_var: true, command_line: true] [|v: &GCTriggerSelector| v.validate()] = GCTriggerSelector::FixedHeapSize((crate::util::memory::get_system_total_memory() as f64 * 0.5f64) as usize),
/// Enable transparent hugepage support for MMTk spaces via madvise (only Linux is supported)
/// This only affects the memory for MMTk spaces.
transparent_hugepages: bool [env_var: true, command_line: true] [|v: &bool| !v || cfg!(target_os = "linux")] = false
}
#[cfg(test)]
mod tests {
use super::DEFAULT_STRESS_FACTOR;
use super::*;
use crate::util::options::Options;
use crate::util::test_util::{serial_test, with_cleanup};
#[test]
fn no_env_var() {
serial_test(|| {
let mut options = Options::default();
options.read_env_var_settings();
assert_eq!(*options.stress_factor, DEFAULT_STRESS_FACTOR);
})
}
#[test]
fn with_valid_env_var() {
serial_test(|| {
with_cleanup(
|| {
std::env::set_var("MMTK_STRESS_FACTOR", "4096");
let mut options = Options::default();
options.read_env_var_settings();
assert_eq!(*options.stress_factor, 4096);
},
|| {
std::env::remove_var("MMTK_STRESS_FACTOR");
},
)
})
}
#[test]
fn with_multiple_valid_env_vars() {
serial_test(|| {
with_cleanup(
|| {
std::env::set_var("MMTK_STRESS_FACTOR", "4096");
std::env::set_var("MMTK_NO_FINALIZER", "true");
let mut options = Options::default();
options.read_env_var_settings();
assert_eq!(*options.stress_factor, 4096);
assert!(*options.no_finalizer);
},
|| {
std::env::remove_var("MMTK_STRESS_FACTOR");
std::env::remove_var("MMTK_NO_FINALIZER");
},
)
})
}
#[test]
fn with_invalid_env_var_value() {
serial_test(|| {
with_cleanup(
|| {
// invalid value, we cannot parse the value, so use the default value
std::env::set_var("MMTK_STRESS_FACTOR", "abc");
let mut options = Options::default();
options.read_env_var_settings();
assert_eq!(*options.stress_factor, DEFAULT_STRESS_FACTOR);
},
|| {
std::env::remove_var("MMTK_STRESS_FACTOR");
},
)
})
}
#[test]
fn with_invalid_env_var_key() {
serial_test(|| {
with_cleanup(
|| {
// invalid value, we cannot parse the value, so use the default value
std::env::set_var("MMTK_ABC", "42");
let mut options = Options::default();
options.read_env_var_settings();
assert_eq!(*options.stress_factor, DEFAULT_STRESS_FACTOR);
},
|| {
std::env::remove_var("MMTK_ABC");
},
)
})
}
#[test]
fn ignore_env_var() {
serial_test(|| {
with_cleanup(
|| {
std::env::set_var("MMTK_STRESS_FACTOR", "42");
let options = Options::default();
// Not calling read_env_var_settings here.
assert_eq!(*options.stress_factor, DEFAULT_STRESS_FACTOR);
},
|| {
std::env::remove_var("MMTK_STRESS_FACTOR");
},
)
})
}
#[test]
fn test_str_option_default() {
serial_test(|| {
let options = Options::default();
assert_eq!(
*options.work_perf_events,
PerfEventOptions { events: vec![] }
);
})
}
#[test]
#[cfg(all(feature = "perf_counter", feature = "work_packet_stats"))]
fn test_work_perf_events_option_from_env_var() {
serial_test(|| {
with_cleanup(
|| {
std::env::set_var("MMTK_WORK_PERF_EVENTS", "PERF_COUNT_HW_CPU_CYCLES,0,-1");
let mut options = Options::default();
options.read_env_var_settings();
assert_eq!(
*options.work_perf_events,
PerfEventOptions {
events: vec![("PERF_COUNT_HW_CPU_CYCLES".into(), 0, -1)]
}
);
},
|| {
std::env::remove_var("MMTK_WORK_PERF_EVENTS");
},
)
})
}
#[test]
#[cfg(all(feature = "perf_counter", feature = "work_packet_stats"))]
fn test_invalid_work_perf_events_option_from_env_var() {
serial_test(|| {
with_cleanup(
|| {
// The option needs to start with "hello", otherwise it is invalid.
std::env::set_var("MMTK_WORK_PERF_EVENTS", "PERF_COUNT_HW_CPU_CYCLES");
let mut options = Options::default();
options.read_env_var_settings();
// invalid value from env var, use default.
assert_eq!(
*options.work_perf_events,
PerfEventOptions { events: vec![] }
);
},
|| {
std::env::remove_var("MMTK_WORK_PERF_EVENTS");
},
)
})
}
#[test]
#[cfg(not(feature = "perf_counter"))]
fn test_phase_perf_events_option_without_feature() {
serial_test(|| {
with_cleanup(
|| {
// We did not enable the perf_counter feature. The option will be invalid anyway, and will be set to empty.
std::env::set_var("MMTK_PHASE_PERF_EVENTS", "PERF_COUNT_HW_CPU_CYCLES,0,-1");
let mut options = Options::default();
options.read_env_var_settings();
// invalid value from env var, use default.
assert_eq!(
*options.work_perf_events,
PerfEventOptions { events: vec![] }
);
},
|| {
std::env::remove_var("MMTK_PHASE_PERF_EVENTS");
},
)
})
}
#[test]
fn test_thread_affinity_invalid_option() {
serial_test(|| {
with_cleanup(
|| {
std::env::set_var("MMTK_THREAD_AFFINITY", "0-");
let mut options = Options::default();
options.read_env_var_settings();
// invalid value from env var, use default.
assert_eq!(*options.thread_affinity, AffinityKind::OsDefault);
},
|| {
std::env::remove_var("MMTK_THREAD_AFFINITY");
},
)
})
}
#[cfg(target_os = "linux")]
#[test]
fn test_thread_affinity_single_core() {
serial_test(|| {
with_cleanup(
|| {
std::env::set_var("MMTK_THREAD_AFFINITY", "0");
let mut options = Options::default();
options.read_env_var_settings();
assert_eq!(
*options.thread_affinity,
AffinityKind::RoundRobin(vec![0_u16])
);
},
|| {
std::env::remove_var("MMTK_THREAD_AFFINITY");
},
)
})
}
#[cfg(target_os = "linux")]
#[test]
fn test_thread_affinity_generate_core_list() {
serial_test(|| {
with_cleanup(
|| {
let mut vec = vec![0_u16];
let mut cpu_list = String::new();
let num_cpus = get_total_num_cpus();
cpu_list.push('0');
for cpu in 1..num_cpus {
cpu_list.push_str(format!(",{}", cpu).as_str());
vec.push(cpu);
}
std::env::set_var("MMTK_THREAD_AFFINITY", cpu_list);
let mut options = Options::default();
options.read_env_var_settings();
assert_eq!(*options.thread_affinity, AffinityKind::RoundRobin(vec));
},
|| {
std::env::remove_var("MMTK_THREAD_AFFINITY");
},
)
})
}
#[test]
fn test_thread_affinity_single_range() {
serial_test(|| {
let affinity = "0-1".parse::<AffinityKind>();
assert_eq!(affinity, Ok(AffinityKind::RoundRobin(vec![0_u16, 1_u16])));
})
}
#[test]
fn test_thread_affinity_complex_core_list() {
serial_test(|| {
let affinity = "0,1-2,4".parse::<AffinityKind>();
assert_eq!(
affinity,
Ok(AffinityKind::RoundRobin(vec![0_u16, 1_u16, 2_u16, 4_u16]))
);
})
}
#[test]
fn test_thread_affinity_space_in_core_list() {
serial_test(|| {
let affinity = "0,1-2,4, 6".parse::<AffinityKind>();
assert_eq!(
affinity,
Err("Core ids have been incorrectly specified".to_string())
);
})
}
#[test]
fn test_thread_affinity_bad_core_list() {
serial_test(|| {
let affinity = "0,1-2,4,".parse::<AffinityKind>();
assert_eq!(
affinity,
Err("Core ids have been incorrectly specified".to_string())
);
})
}
#[test]
fn test_thread_affinity_range_start_greater_than_end() {
serial_test(|| {
let affinity = "1-0".parse::<AffinityKind>();
assert_eq!(
affinity,
Err("Starting core id in range should be less than the end".to_string())
);
})
}
#[test]
fn test_thread_affinity_bad_range_option() {
serial_test(|| {
let affinity = "0-1-4".parse::<AffinityKind>();
assert_eq!(
affinity,
Err("Core ids have been incorrectly specified".to_string())
);
})
}
#[test]
fn test_process_valid() {
serial_test(|| {
let mut options = Options::default();
let success = options.set_from_command_line("no_finalizer", "true");
assert!(success);
assert!(*options.no_finalizer);
})
}
#[test]
fn test_process_invalid() {
serial_test(|| {
let mut options = Options::default();
let default_no_finalizer = *options.no_finalizer;
let success = options.set_from_command_line("no_finalizer", "100");
assert!(!success);
assert_eq!(*options.no_finalizer, default_no_finalizer);
})
}
#[test]
fn test_process_bulk_empty() {
serial_test(|| {
let mut options = Options::default();
let success = options.set_bulk_from_command_line("");
assert!(success);
})
}
#[test]
fn test_process_bulk_valid() {
serial_test(|| {
let mut options = Options::default();
let success = options.set_bulk_from_command_line("no_finalizer=true stress_factor=42");
assert!(success);
assert!(*options.no_finalizer);
assert_eq!(*options.stress_factor, 42);
})
}
#[test]
fn test_process_bulk_comma_separated_valid() {
serial_test(|| {
let mut options = Options::default();
let success = options.set_bulk_from_command_line("no_finalizer=true,stress_factor=42");
assert!(success);
assert!(*options.no_finalizer);
assert_eq!(*options.stress_factor, 42);
})
}
#[test]
fn test_process_bulk_invalid() {
serial_test(|| {
let mut options = Options::default();
let success = options.set_bulk_from_command_line("no_finalizer=true stress_factor=a");
assert!(!success);
})
}
#[test]
fn test_set_typed_option_valid() {
serial_test(|| {
let mut options = Options::default();
let success = options.no_finalizer.set(true);
assert!(success);
assert!(*options.no_finalizer);
})
}
#[test]
fn test_set_typed_option_invalid() {
serial_test(|| {
let mut options = Options::default();
let threads = *options.threads;
let success = options.threads.set(0);
assert!(!success);
assert_eq!(*options.threads, threads);
})
}
}