mmtk/util/memory.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
use crate::util::alloc::AllocationError;
use crate::util::opaque_pointer::*;
use crate::util::Address;
use crate::vm::{Collection, VMBinding};
use bytemuck::NoUninit;
use libc::{PROT_EXEC, PROT_NONE, PROT_READ, PROT_WRITE};
use std::io::{Error, Result};
use sysinfo::MemoryRefreshKind;
use sysinfo::{RefreshKind, System};
#[cfg(target_os = "linux")]
// MAP_FIXED_NOREPLACE returns EEXIST if already mapped
const MMAP_FLAGS: libc::c_int = libc::MAP_ANON | libc::MAP_PRIVATE | libc::MAP_FIXED_NOREPLACE;
#[cfg(target_os = "macos")]
// MAP_FIXED is used instead of MAP_FIXED_NOREPLACE (which is not available on macOS). We are at the risk of overwriting pre-existing mappings.
const MMAP_FLAGS: libc::c_int = libc::MAP_ANON | libc::MAP_PRIVATE | libc::MAP_FIXED;
/// Strategy for performing mmap
#[derive(Debug, Copy, Clone)]
pub struct MmapStrategy {
/// Do we support huge pages?
pub huge_page: HugePageSupport,
/// The protection flags for mmap
pub prot: MmapProtection,
}
impl MmapStrategy {
/// Create a new strategy
pub fn new(transparent_hugepages: bool, prot: MmapProtection) -> Self {
Self {
huge_page: if transparent_hugepages {
HugePageSupport::TransparentHugePages
} else {
HugePageSupport::No
},
prot,
}
}
/// The strategy for MMTk's own internal memory
pub const INTERNAL_MEMORY: Self = Self {
huge_page: HugePageSupport::No,
prot: MmapProtection::ReadWrite,
};
/// The strategy for MMTk side metadata
pub const SIDE_METADATA: Self = Self::INTERNAL_MEMORY;
/// The strategy for MMTk's test memory
#[cfg(test)]
pub const TEST: Self = Self::INTERNAL_MEMORY;
}
/// The protection flags for Mmap
#[repr(i32)]
#[derive(Debug, Copy, Clone)]
pub enum MmapProtection {
/// Allow read + write
ReadWrite,
/// Allow read + write + code execution
ReadWriteExec,
/// Do not allow any access
NoAccess,
}
impl MmapProtection {
/// Turn the protection enum into the native flags
pub fn into_native_flags(self) -> libc::c_int {
match self {
Self::ReadWrite => PROT_READ | PROT_WRITE,
Self::ReadWriteExec => PROT_READ | PROT_WRITE | PROT_EXEC,
Self::NoAccess => PROT_NONE,
}
}
}
/// Support for huge pages
#[repr(u8)]
#[derive(Debug, Copy, Clone, NoUninit)]
pub enum HugePageSupport {
/// No support for huge page
No,
/// Enable transparent huge pages for the pages that are mapped. This option is only for linux.
TransparentHugePages,
}
/// Annotation for an mmap entry.
///
/// Invocations of `mmap_fixed` and other functions that may transitively call `mmap_fixed`
/// require an annotation that indicates the purpose of the memory mapping.
///
/// This is for debugging. On Linux, mmtk-core will use `prctl` with `PR_SET_VMA` to set the
/// human-readable name for the given mmap region. The annotation is ignored on other platforms.
///
/// Note that when using `Map32` (even when running on 64-bit architectures), the discontiguous
/// memory range is shared between different spaces. Spaces may use `mmap` to map new chunks, but
/// the same chunk may later be reused by other spaces. The annotation only applies when `mmap` is
/// called for a chunk for the first time, which reflects which space first attempted the mmap, not
/// which space is currently using the chunk. Use `crate::policy::space::print_vm_map` to print a
/// more accurate mapping between address ranges and spaces.
///
/// On 32-bit architecture, side metadata are allocated in a chunked fasion. One single `mmap`
/// region will contain many different metadata. In that case, we simply annotate the whole region
/// with a `MmapAnnotation::SideMeta` where `meta` is `"all"`.
pub enum MmapAnnotation<'a> {
/// The mmap is for a space.
Space {
/// The name of the space.
name: &'a str,
},
/// The mmap is for a side metadata.
SideMeta {
/// The name of the space.
space: &'a str,
/// The name of the side metadata.
meta: &'a str,
},
/// The mmap is for a test case. Usually constructed using the [`mmap_anno_test!`] macro.
Test {
/// The source file.
file: &'a str,
/// The line number.
line: u32,
},
/// For all other use cases.
Misc {
/// A human-readable descriptive name.
name: &'a str,
},
}
/// Construct an `MmapAnnotation::Test` with the current file name and line number.
#[macro_export]
macro_rules! mmap_anno_test {
() => {
&$crate::util::memory::MmapAnnotation::Test {
file: file!(),
line: line!(),
}
};
}
// Export this to external crates
pub use mmap_anno_test;
impl std::fmt::Display for MmapAnnotation<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
MmapAnnotation::Space { name } => write!(f, "mmtk:space:{name}"),
MmapAnnotation::SideMeta { space, meta } => write!(f, "mmtk:sidemeta:{space}:{meta}"),
MmapAnnotation::Test { file, line } => write!(f, "mmtk:test:{file}:{line}"),
MmapAnnotation::Misc { name } => write!(f, "mmtk:misc:{name}"),
}
}
}
/// Check the result from an mmap function in this module.
/// Return true if the mmap has failed due to an existing conflicting mapping.
pub(crate) fn result_is_mapped(result: Result<()>) -> bool {
match result {
Ok(_) => false,
Err(err) => err.raw_os_error().unwrap() == libc::EEXIST,
}
}
/// Set a range of memory to 0.
pub fn zero(start: Address, len: usize) {
set(start, 0, len);
}
/// Set a range of memory to the given value. Similar to memset.
pub fn set(start: Address, val: u8, len: usize) {
unsafe {
std::ptr::write_bytes::<u8>(start.to_mut_ptr(), val, len);
}
}
/// Demand-zero mmap:
/// This function mmaps the memory and guarantees to zero all mapped memory.
/// This function WILL overwrite existing memory mapping. The user of this function
/// needs to be aware of this, and use it cautiously.
///
/// # Safety
/// This function WILL overwrite existing memory mapping if there is any. So only use this function if you know
/// the memory has been reserved by mmtk (e.g. after the use of mmap_noreserve()). Otherwise using this function
/// may corrupt others' data.
#[allow(clippy::let_and_return)] // Zeroing is not neceesary for some OS/s
pub unsafe fn dzmmap(
start: Address,
size: usize,
strategy: MmapStrategy,
anno: &MmapAnnotation,
) -> Result<()> {
let flags = libc::MAP_ANON | libc::MAP_PRIVATE | libc::MAP_FIXED;
let ret = mmap_fixed(start, size, flags, strategy, anno);
// We do not need to explicitly zero for Linux (memory is guaranteed to be zeroed)
#[cfg(not(target_os = "linux"))]
if ret.is_ok() {
zero(start, size)
}
ret
}
/// Demand-zero mmap (no replace):
/// This function mmaps the memory and guarantees to zero all mapped memory.
/// This function will not overwrite existing memory mapping, and it will result Err if there is an existing mapping.
#[allow(clippy::let_and_return)] // Zeroing is not neceesary for some OS/s
pub fn dzmmap_noreplace(
start: Address,
size: usize,
strategy: MmapStrategy,
anno: &MmapAnnotation,
) -> Result<()> {
let flags = MMAP_FLAGS;
let ret = mmap_fixed(start, size, flags, strategy, anno);
// We do not need to explicitly zero for Linux (memory is guaranteed to be zeroed)
#[cfg(not(target_os = "linux"))]
if ret.is_ok() {
zero(start, size)
}
ret
}
/// mmap with no swap space reserve:
/// This function does not reserve swap space for this mapping, which means there is no guarantee that writes to the
/// mapping can always be successful. In case of out of physical memory, one may get a segfault for writing to the mapping.
/// We can use this to reserve the address range, and then later overwrites the mapping with dzmmap().
pub fn mmap_noreserve(
start: Address,
size: usize,
mut strategy: MmapStrategy,
anno: &MmapAnnotation,
) -> Result<()> {
strategy.prot = MmapProtection::NoAccess;
let flags = MMAP_FLAGS | libc::MAP_NORESERVE;
mmap_fixed(start, size, flags, strategy, anno)
}
fn mmap_fixed(
start: Address,
size: usize,
flags: libc::c_int,
strategy: MmapStrategy,
_anno: &MmapAnnotation,
) -> Result<()> {
let ptr = start.to_mut_ptr();
let prot = strategy.prot.into_native_flags();
wrap_libc_call(
&|| unsafe { libc::mmap(start.to_mut_ptr(), size, prot, flags, -1, 0) },
ptr,
)?;
#[cfg(all(
any(target_os = "linux", target_os = "android"),
not(feature = "no_mmap_annotation")
))]
{
// `PR_SET_VMA` is new in Linux 5.17. We compile against a version of the `libc` crate that
// has the `PR_SET_VMA_ANON_NAME` constant. When runnning on an older kernel, it will not
// recognize this attribute and will return `EINVAL`. However, `prctl` may return `EINVAL`
// for other reasons, too. That includes `start` being an invalid address, and the
// formatted `anno_cstr` being longer than 80 bytes including the trailing `'\0'`. But
// since this prctl is used for debugging, we log the error instead of panicking.
let anno_str = _anno.to_string();
let anno_cstr = std::ffi::CString::new(anno_str).unwrap();
let result = wrap_libc_call(
&|| unsafe {
libc::prctl(
libc::PR_SET_VMA,
libc::PR_SET_VMA_ANON_NAME,
start.to_ptr::<libc::c_void>(),
size,
anno_cstr.as_ptr(),
)
},
0,
);
if let Err(e) = result {
debug!("Error while calling prctl: {e}");
}
}
match strategy.huge_page {
HugePageSupport::No => Ok(()),
HugePageSupport::TransparentHugePages => {
#[cfg(target_os = "linux")]
{
wrap_libc_call(
&|| unsafe { libc::madvise(start.to_mut_ptr(), size, libc::MADV_HUGEPAGE) },
0,
)
}
// Setting the transparent hugepage option to true will not pass
// the validation on non-Linux OSes
#[cfg(not(target_os = "linux"))]
unreachable!()
}
}
}
/// Unmap the given memory (in page granularity). This wraps the unsafe libc munmap call.
pub fn munmap(start: Address, size: usize) -> Result<()> {
wrap_libc_call(&|| unsafe { libc::munmap(start.to_mut_ptr(), size) }, 0)
}
/// Properly handle errors from a mmap Result, including invoking the binding code in the case of
/// an OOM error.
pub fn handle_mmap_error<VM: VMBinding>(
error: Error,
tls: VMThread,
addr: Address,
bytes: usize,
) -> ! {
use std::io::ErrorKind;
eprintln!("Failed to mmap {}, size {}", addr, bytes);
eprintln!("{}", get_process_memory_maps());
match error.kind() {
// From Rust nightly 2021-05-12, we started to see Rust added this ErrorKind.
ErrorKind::OutOfMemory => {
// Signal `MmapOutOfMemory`. Expect the VM to abort immediately.
trace!("Signal MmapOutOfMemory!");
VM::VMCollection::out_of_memory(tls, AllocationError::MmapOutOfMemory);
unreachable!()
}
// Before Rust had ErrorKind::OutOfMemory, this is how we capture OOM from OS calls.
// TODO: We may be able to remove this now.
ErrorKind::Other => {
// further check the error
if let Some(os_errno) = error.raw_os_error() {
// If it is OOM, we invoke out_of_memory() through the VM interface.
if os_errno == libc::ENOMEM {
// Signal `MmapOutOfMemory`. Expect the VM to abort immediately.
trace!("Signal MmapOutOfMemory!");
VM::VMCollection::out_of_memory(tls, AllocationError::MmapOutOfMemory);
unreachable!()
}
}
}
ErrorKind::AlreadyExists => {
panic!("Failed to mmap, the address is already mapped. Should MMTk quarantine the address range first?");
}
_ => {}
}
panic!("Unexpected mmap failure: {:?}", error)
}
/// Checks if the memory has already been mapped. If not, we panic.
///
/// Note that the checking has a side effect that it will map the memory if it was unmapped. So we panic if it was unmapped.
/// Be very careful about using this function.
///
/// This function is currently left empty for non-linux, and should be implemented in the future.
/// As the function is only used for assertions, MMTk will still run even if we never panic.
pub(crate) fn panic_if_unmapped(_start: Address, _size: usize, _anno: &MmapAnnotation) {
#[cfg(target_os = "linux")]
{
let flags = MMAP_FLAGS;
match mmap_fixed(
_start,
_size,
flags,
MmapStrategy {
huge_page: HugePageSupport::No,
prot: MmapProtection::ReadWrite,
},
_anno,
) {
Ok(_) => panic!("{} of size {} is not mapped", _start, _size),
Err(e) => {
assert!(
e.kind() == std::io::ErrorKind::AlreadyExists,
"Failed to check mapped: {:?}",
e
);
}
}
}
}
/// Unprotect the given memory (in page granularity) to allow access (PROT_READ/WRITE/EXEC).
pub fn munprotect(start: Address, size: usize, prot: MmapProtection) -> Result<()> {
let prot = prot.into_native_flags();
wrap_libc_call(
&|| unsafe { libc::mprotect(start.to_mut_ptr(), size, prot) },
0,
)
}
/// Protect the given memory (in page granularity) to forbid any access (PROT_NONE).
pub fn mprotect(start: Address, size: usize) -> Result<()> {
wrap_libc_call(
&|| unsafe { libc::mprotect(start.to_mut_ptr(), size, PROT_NONE) },
0,
)
}
fn wrap_libc_call<T: PartialEq>(f: &dyn Fn() -> T, expect: T) -> Result<()> {
let ret = f();
if ret == expect {
Ok(())
} else {
Err(std::io::Error::last_os_error())
}
}
/// Get the memory maps for the process. The returned string is a multi-line string.
/// This is only meant to be used for debugging. For example, log process memory maps after detecting a clash.
#[cfg(any(target_os = "linux", target_os = "android"))]
pub fn get_process_memory_maps() -> String {
// print map
use std::fs::File;
use std::io::Read;
let mut data = String::new();
let mut f = File::open("/proc/self/maps").unwrap();
f.read_to_string(&mut data).unwrap();
data
}
/// Get the memory maps for the process. The returned string is a multi-line string.
/// This is only meant to be used for debugging. For example, log process memory maps after detecting a clash.
#[cfg(target_os = "macos")]
pub fn get_process_memory_maps() -> String {
// Get the current process ID (replace this with a specific PID if needed)
let pid = std::process::id();
// Execute the vmmap command
let output = std::process::Command::new("vmmap")
.arg(pid.to_string()) // Pass the PID as an argument
.output() // Capture the output
.expect("Failed to execute vmmap command");
// Check if the command was successful
if output.status.success() {
// Convert the command output to a string
let output_str =
std::str::from_utf8(&output.stdout).expect("Failed to convert output to string");
output_str.to_string()
} else {
// Handle the error case
let error_message =
std::str::from_utf8(&output.stderr).expect("Failed to convert error message to string");
panic!("Failed to get process memory map: {}", error_message)
}
}
/// Get the memory maps for the process. The returned string is a multi-line string.
/// This is only meant to be used for debugging. For example, log process memory maps after detecting a clash.
#[cfg(not(any(target_os = "linux", target_os = "android", target_os = "macos")))]
pub fn get_process_memory_maps() -> String {
"(process map unavailable)".to_string()
}
/// Returns the total physical memory for the system in bytes.
pub(crate) fn get_system_total_memory() -> u64 {
// TODO: Note that if we want to get system info somewhere else in the future, we should
// refactor this instance into some global struct. sysinfo recommends sharing one instance of
// `System` instead of making multiple instances.
// See https://docs.rs/sysinfo/0.29.0/sysinfo/index.html#usage for more info
//
// If we refactor the `System` instance to use it for other purposes, please make sure start-up
// time is not affected. It takes a long time to load all components in sysinfo (e.g. by using
// `System::new_all()`). Some applications, especially short-running scripts, are sensitive to
// start-up time. During start-up, MMTk core only needs the total memory to initialize the
// `Options`. If we only load memory-related components on start-up, it should only take <1ms
// to initialize the `System` instance.
let sys = System::new_with_specifics(
RefreshKind::new().with_memory(MemoryRefreshKind::new().with_ram()),
);
sys.total_memory()
}
#[cfg(test)]
mod tests {
use super::*;
use crate::util::constants::BYTES_IN_PAGE;
use crate::util::test_util::MEMORY_TEST_REGION;
use crate::util::test_util::{serial_test, with_cleanup};
// In the tests, we will mmap this address. This address should not be in our heap (in case we mess up with other tests)
const START: Address = MEMORY_TEST_REGION.start;
#[test]
fn test_mmap() {
serial_test(|| {
with_cleanup(
|| {
let res = unsafe {
dzmmap(START, BYTES_IN_PAGE, MmapStrategy::TEST, mmap_anno_test!())
};
assert!(res.is_ok());
// We can overwrite with dzmmap
let res = unsafe {
dzmmap(START, BYTES_IN_PAGE, MmapStrategy::TEST, mmap_anno_test!())
};
assert!(res.is_ok());
},
|| {
assert!(munmap(START, BYTES_IN_PAGE).is_ok());
},
);
});
}
#[test]
fn test_munmap() {
serial_test(|| {
with_cleanup(
|| {
let res = dzmmap_noreplace(
START,
BYTES_IN_PAGE,
MmapStrategy::TEST,
mmap_anno_test!(),
);
assert!(res.is_ok());
let res = munmap(START, BYTES_IN_PAGE);
assert!(res.is_ok());
},
|| {
assert!(munmap(START, BYTES_IN_PAGE).is_ok());
},
)
})
}
#[cfg(target_os = "linux")]
#[test]
fn test_mmap_noreplace() {
serial_test(|| {
with_cleanup(
|| {
// Make sure we mmapped the memory
let res = unsafe {
dzmmap(START, BYTES_IN_PAGE, MmapStrategy::TEST, mmap_anno_test!())
};
assert!(res.is_ok());
// Use dzmmap_noreplace will fail
let res = dzmmap_noreplace(
START,
BYTES_IN_PAGE,
MmapStrategy::TEST,
mmap_anno_test!(),
);
assert!(res.is_err());
},
|| {
assert!(munmap(START, BYTES_IN_PAGE).is_ok());
},
)
});
}
#[test]
fn test_mmap_noreserve() {
serial_test(|| {
with_cleanup(
|| {
let res =
mmap_noreserve(START, BYTES_IN_PAGE, MmapStrategy::TEST, mmap_anno_test!());
assert!(res.is_ok());
// Try reserve it
let res = unsafe {
dzmmap(START, BYTES_IN_PAGE, MmapStrategy::TEST, mmap_anno_test!())
};
assert!(res.is_ok());
},
|| {
assert!(munmap(START, BYTES_IN_PAGE).is_ok());
},
)
})
}
#[cfg(target_os = "linux")]
#[test]
#[should_panic]
fn test_check_is_mmapped_for_unmapped() {
serial_test(|| {
with_cleanup(
|| {
// We expect this call to panic
panic_if_unmapped(START, BYTES_IN_PAGE, mmap_anno_test!());
},
|| {
assert!(munmap(START, BYTES_IN_PAGE).is_ok());
},
)
})
}
#[test]
fn test_check_is_mmapped_for_mapped() {
serial_test(|| {
with_cleanup(
|| {
assert!(dzmmap_noreplace(
START,
BYTES_IN_PAGE,
MmapStrategy::TEST,
mmap_anno_test!()
)
.is_ok());
panic_if_unmapped(START, BYTES_IN_PAGE, mmap_anno_test!());
},
|| {
assert!(munmap(START, BYTES_IN_PAGE).is_ok());
},
)
})
}
#[cfg(target_os = "linux")]
#[test]
#[should_panic]
fn test_check_is_mmapped_for_unmapped_next_to_mapped() {
serial_test(|| {
with_cleanup(
|| {
// map 1 page from START
assert!(dzmmap_noreplace(
START,
BYTES_IN_PAGE,
MmapStrategy::TEST,
mmap_anno_test!(),
)
.is_ok());
// check if the next page is mapped - which should panic
panic_if_unmapped(START + BYTES_IN_PAGE, BYTES_IN_PAGE, mmap_anno_test!());
},
|| {
assert!(munmap(START, BYTES_IN_PAGE * 2).is_ok());
},
)
})
}
#[test]
#[should_panic]
// This is a bug we need to fix. We need to figure out a way to properly check if a piece of memory is mapped or not.
// Alternatively, we should remove the code that calls the function.
#[ignore]
fn test_check_is_mmapped_for_partial_mapped() {
serial_test(|| {
with_cleanup(
|| {
// map 1 page from START
assert!(dzmmap_noreplace(
START,
BYTES_IN_PAGE,
MmapStrategy::TEST,
mmap_anno_test!()
)
.is_ok());
// check if the 2 pages from START are mapped. The second page is unmapped, so it should panic.
panic_if_unmapped(START, BYTES_IN_PAGE * 2, mmap_anno_test!());
},
|| {
assert!(munmap(START, BYTES_IN_PAGE * 2).is_ok());
},
)
})
}
#[test]
fn test_get_system_total_memory() {
let total = get_system_total_memory();
println!("Total memory: {:?}", total);
}
}